
SYMPHONY 3.0.1 User’s Manual ∗

SYMPHONY Developed By

T.K. Ralphs†

L. Ladányi‡

Interactive Graph Drawing

Software By

M. Esö§

May 29, 2003

∗This research was partially supported by NSF Grant DMS-9527124, Texas ATP Grant 97-3604-010, and NSF
Grant ACI-0102687

†Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18017,
tkralphs@lehigh.edu, http://www.lehigh.edu/~tkr2

‡Department of Mathematical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
§Department of Mathematical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

1

c©2000-2003 Ted Ralphs1.

1A revised version of Sections 2-7 of this manual now appears in the Springer-Verlag
book Computational Combinatorial Optimization edited by M. Jünger and D. Naddef, see
http://link.springer.de/link/service/series/0558/tocs/t2241.htm

CONTENTS 3

Contents

1 How to Use This Manual 1

2 A Brief History 1

3 Related Work 2

4 Introduction to Branch, Cut, and Price 2
4.1 Branch and Bound . 2
4.2 Branch, Cut, and Price . 3

5 Design of SYMPHONY 5
5.1 An Object-oriented Approach . 5
5.2 Data Structures and Storage . 6

5.2.1 Variables . 7
5.2.2 Constraints . 7
5.2.3 Search Tree . 8

5.3 Modular Implementation . 8
5.3.1 The Master Module . 10
5.3.2 The Tree Manager Module . 10
5.3.3 The Linear Programming Module . 11
5.3.4 The Cut Generator Module . 11
5.3.5 The Cut Pool Module . 11

5.4 SYMPHONY Overview . 11

6 Details of the Implementation 12
6.1 The Master Module . 12
6.2 The Linear Programming Module . 12

6.2.1 The LP Engine . 14
6.2.2 Managing the LP Relaxation . 14
6.2.3 Branching . 15

6.3 The Tree Manager Module . 15
6.3.1 Managing the Search Tree . 15
6.3.2 Search Chains and Diving . 16
6.3.3 The Two-Phase Algorithm . 16

6.4 The Cut Generator Module . 17
6.5 The Cut Pool Module . 17

6.5.1 Maintaining and Scanning the Pool . 17
6.5.2 Using Multiple Pools . 17

7 Parallelizing BCP 18
7.1 Details of the Parallel Implementation . 18

7.1.1 Parallel Configurations . 18
7.1.2 Inter-process Communication . 19
7.1.3 Fault Tolerance . 19

4 CONTENTS

8 Quick Start Guide 19
8.1 Compiling the Sample Application with Unix Operating Systems 20

8.1.1 Preparing for Sample Compilation. 20
8.1.2 Compiling the Sequential Version. 20
8.1.3 Compiling the Shared Memory Version. 21
8.1.4 Compiling the Distributed Version. 21

8.2 Compiling the Sample Application with Microsoft Windows 22
8.3 Developing a New Application . 24

8.3.1 Unix . 24
8.3.2 Microsoft Windows . 24

9 Advanced Development 25
9.1 Orienting Yourself . 25
9.2 Writing the User Functions . 26
9.3 Data Structures . 27

9.3.1 Internal Data Structures . 27
9.3.2 User-defined Data Structures . 27

9.4 Inter-process Communication for Distributed Computing 27
9.5 The LP Engine . 27
9.6 Compiling Your Application . 28

9.6.1 Unix Operating Systems . 28
9.6.2 Microsoft Windows . 29

9.7 Debugging Your Application . 29
9.7.1 The First Rule . 29
9.7.2 Debugging with PVM . 30
9.7.3 Using Purify and Quantify . 30
9.7.4 Checking the Validity of Cuts and Tracing the Optimal Path 30
9.7.5 Using the Interactive Graph Drawing Software 31
9.7.6 Other Debugging Techniques . 31

9.8 Controlling Execution and Output . 32
9.9 Other Resources . 32

10 The User API Specification 33
10.1 User-written functions of the Master process . 33
10.2 User-written functions of the LP process . 41
10.3 User-written functions of the CG process . 63
10.4 User-written functions of the CP process . 66
10.5 User-written functions of the Draw Graph process 68

11 SYMPHONY Parameters 70
11.1 Global parameters . 70
11.2 Master Process parameters . 70
11.3 Draw Graph parameters . 71
11.4 Tree Manager parameters . 72
11.5 LP parameters . 75
11.6 Cut Generator Parameters . 78
11.7 Cut Pool Parameters . 78

CONTENTS 5

12 Bibliography 80

1

1 How to Use This Manual

The manual is divided into roughly three parts. The first part consists of Sections 2–4 and contains
background information. Those not familiar with the basic methodology of branch, cut, and price
should read these sections, especially Section 4, where we briefly describe the techniques involved
at a high level. The second part of the manual consists of Sections 5–7 and is intended for further
background and a more complete understanding of the design and implementation of SYMPHONY.
However, it is not really necessary to to read these sections before undertaking development of a
SYMPHONY application. In Section 5, we describe the overall design of without reference to the
implementational details and with only passing reference to parallelism. In Section 6, we then move
on to discuss the details of the implementation. In Section 7, we briefly discuss issues involved in
parallel execution of SYMPHONY. The remainder of the manual, including Sections 8–11 describes
in detail how to develop an application using SYMPHONY. For those who are familiar with branch
and cut and want to get started quickly, proceed directly to to Section 8 for information on getting
started. Section 10 contains a description of the API, and finally, SYMPHONY’s parameters are
described in Section 11. Please note that for reference use, the HTML version of this manual may
be more practical, as the embedded hyperlinks make it easier to navigate.

2 A Brief History

Since the inception of optimization as a recognized field of study in mathematics, researchers have
been both intrigued and stymied by the difficulty of solving many of the most interesting classes of
discrete optimization problems. Even combinatorial problems, though conceptually easy to model
as integer programs, have long remained challenging to solve in practice. The last two decades
have seen tremendous progress in our ability to solve large-scale discrete optimization problems.
These advances have culminated in the approach that we now call branch and cut, a technique (see
[15, 27, 17]) which brings the computational tools of branch and bound algorithms together with
the theoretical tools of polyhedral combinatorics. Indeed, in 1998, Applegate, Bixby, Chvátal, and
Cook used this technique to solve a Traveling Salesman Problem instance with 13,509 cities, a full
order of magnitude larger than what had been possible just a decade earlier [1] and two orders of
magnitude larger than the largest problem that had been solved up until 1978. This feat becomes
even more impressive when one realizes that the number of variables in the standard formulation
for this problem is approximately the square of the number of cities. Hence, we are talking about
solving a problem with roughly 100 million variables.

There are several reasons for this impressive progress. Perhaps the most important is the dra-
matic increase in available computing power over the last decade, both in terms of processor speed
and memory. This increase in the power of hardware has subsequently facilitated the development
of increasingly sophisticated software for optimization, built on a wealth of theoretical results. As
software development has become a central theme of optimization research efforts, many theoretical
results have been “re-discovered” in light of their new-found computational importance. Finally,
the use of parallel computing has allowed researchers to further leverage their gains.

Because of the rapidly increasing sophistication of computational techniques, one of the main
difficulties faced by researchers who wish to apply these techniques is the level of effort required
to develop an efficient implementation. The inherent need for incorporating problem-dependent
methods (most notably for dynamic generation of variables and cutting planes) has typically re-
quired the time-consuming development of custom implementations. Around 1993, this led to the

2 4 INTRODUCTION TO BRANCH, CUT, AND PRICE

development by two independent research groups of software libraries aimed at providing a generic
framework that users could easily customize for use in a particular problem setting. One of these
groups, headed by Jünger and Thienel, eventually produced ABACUS (A Branch And CUt Sys-
tem) [18], while the other, headed by the authors, produced what was then known as COMPSys
(Combinatorial Optimization Multi-processing System). After several revisions to enable more
broad functionality, COMPSys became SYMPHONY (Single- or Multi-Process Optimization over
Networks). A version of SYMPHONY written in C++, which we call COIN/BCP has also been
produced at IBM under the COIN-OR project [8]. The COIN/BCP package takes substantially the
same approach and has the same functionality as SYMPHONY, but has extended SYMPHONY’s
capabilities in some areas.

3 Related Work

The 1990’s witnessed a broad development of software for discrete optimization. Almost without
exception, these new software packages were based on the techniques of branch, cut, and price.
The packages fell into two main categories—those based on general-purpose algorithms for solving
mixed integer programs (MIPs) (without the use of special structure) and those facilitating the
use of special structure by interfacing with user-supplied, problem-specific subroutines. We will
call packages in this second category frameworks. There have also been numerous special-purpose
codes developed for use in particular problem settings.

Of the two categories, MIP solvers are the most common. Among the dozens of offerings in this
category are MINTO [25], MIPO [3], bc-opt [9], and SIP [24]. Generic frameworks, on the other
hand, are far less numerous. The three frameworks we have already mentioned (SYMPHONY,
ABACUS, and COIN/BCP) are the most full-featured packages available. Several others, such as
MINTO, originated as MIP solvers but have the capability of utilizing problem-specific subroutines.
CONCORDE [1, 2], a package for solving the Traveling Salesman Problem (TSP), also deserves
mention as the most sophisticated special-purpose code developed to date.

Other related software includes several frameworks for implementing parallel branch and bound.
Frameworks for general parallel branch and bound include PUBB [32], BoB [6], PPBB-Lib [34],
and PICO [11]. PARINO [23] and FATCOP [7] are parallel MIP solvers.

4 Introduction to Branch, Cut, and Price

4.1 Branch and Bound

Branch and bound is the broad class of algorithms from which branch, cut, and price is descended.
A branch and bound algorithm uses a divide and conquer strategy to partition the solution space
into subproblems and then optimizes individually over each subproblem. For instance, let S be the
set of solutions to a given problem, and let c ∈ RS be a vector of costs associated with members
of S. Suppose we wish to determine a least cost member of S and we are given ŝ ∈ S, a “good”
solution determined heuristically. Using branch and bound, we initially examine the entire solution
space S. In the processing or bounding phase, we relax the problem. In so doing, we admit solutions
that are not in the feasible set S. Solving this relaxation yields a lower bound on the value of an
optimal solution. If the solution to this relaxation is a member of S or has cost equal to ŝ, then we
are done—either the new solution or ŝ, respectively, is optimal. Otherwise, we identify n subsets
of S, S1, . . . , Sn, such that ∪n

i=1Si = S. Each of these subsets is called a subproblem; S1, . . . , Sn are

4.2 Branch, Cut, and Price 3

Bounding Operation
Input: A subproblem S, described in terms of a “small” set of inequalities L′
such that S = {xs : s ∈ F and axs ≤ β ∀ (a, β) ∈ L′} and α, an upper bound
on the global optimal value.
Output: Either (1) an optimal solution s∗ ∈ S to the subproblem, (2) a lower
bound on the optimal value of the subproblem, or (3) a message pruned indi-
cating that the subproblem should not be considered further.
Step 1. Set C ← L′.
Step 2. Solve the LP min{cx : ax ≤ β ∀ (a, β) ∈ C}.
Step 3. If the LP has a feasible solution x̂, then go to Step 4. Otherwise, STOP
and output pruned. This subproblem has no feasible solutions.
Step 4. If cx̂ < α, then go to Step 5. Otherwise, STOP and output pruned.
This subproblem cannot produce a solution of value better than α.
Step 5. If x̂ is the incidence vector of some ŝ ∈ S, then ŝ is the optimal solution
to this subproblem. STOP and output ŝ as s∗. Otherwise, apply separation
algorithms and heuristics to x̂ to get a set of violated inequalities C′. If C′ = ∅,
then cx̂ is a lower bound on the value of an optimal element of S. STOP and
return x̂ and the lower bound cx̂. Otherwise, set C ← C ∪ C′ and go to Step 2.

Figure 1: Bounding in the branch and cut algorithm

sometimes called the children of S. We add the children of S to the list of candidate subproblems
(those which need processing). This is called branching.

To continue the algorithm, we select one of the candidate subproblems and process it. There
are four possible results. If we find a feasible solution better than ŝ, then we replace ŝ with the
new solution and continue. We may also find that the subproblem has no solutions, in which case
we discard, or prune it. Otherwise, we compare the lower bound to our global upper bound. If it
is greater than or equal to our current upper bound, then we may again prune the subproblem.
Finally, if we cannot prune the subproblem, we are forced to branch and add the children of
this subproblem to the list of active candidates. We continue in this way until the list of active
subproblems is empty, at which point our current best solution is the optimal one.

4.2 Branch, Cut, and Price

In many applications, the bounding operation is accomplished using the tools of linear programming
(LP), a technique first described in full generality by Hoffman and Padberg [17]. This general class
of algorithms is known as LP-based branch and bound. Typically, the integrality constraints of an
integer programming formulation of the problem are relaxed to obtain a LP relaxation, which is
then solved to obtain a lower bound for the problem. In [27], Padberg and Rinaldi improved on
this basic idea by describing a method of using globally valid inequalities (i.e., inequalities valid for
the convex hull of integer solutions) to strengthen the LP relaxation. They called this technique
branch and cut. Since then, many implementations (including ours) have been fashioned around
the framework they described for solving the Traveling Salesman Problem.

As an example, let a combinatorial optimization problem CP = (E,F) with ground set E
and feasible set F ⊆ 2E be given along with a cost function c ∈ RE . The incidence vectors
corresponding to the members of F are sometimes specified as the the set of all incidence vectors

4 4 INTRODUCTION TO BRANCH, CUT, AND PRICE

Branching Operation
Input: A subproblem S and x̂, the LP solution yielding the lower bound.
Output: S1, . . . , Sp such that S = ∪p

i=1Si.
Step 1. Determine sets L1, . . . ,Lp of inequalities such that S = ∪n

i=1{x ∈ S :
ax ≤ β ∀ (a, β) ∈ Li} and x̂ /∈ ∪n

i=1Si.
Step 2. Set Si = {x ∈ S : ax ≤ β ∀ (a, β) ∈ Li ∪ L′} where L′ is the set of
inequalities used to describe S.

Figure 2: Branching in the branch and cut algorithm

Generic Branch and Cut Algorithm
Input: A data array specifying the problem instance.
Output: The global optimal solution s∗ to the problem instance.
Step 1. Generate a “good” feasible solution ŝ using heuristics. Set α ← c(ŝ).
Step 2. Generate the first subproblem SI by constructing a small set L′ of
inequalities valid for P. Set A ← {SI}.
Step 3. If A = ∅, STOP and output ŝ as the global optimum s∗. Otherwise,
choose some S ∈ A. Set A ← A \ {S}. Process S.
Step 4. If the result of Step 3 is a feasible solution s, then cs < cŝ. Set ŝ ← s
and α ← c(s) and go to Step 3. If the subproblem was pruned, go to Step 3.
Otherwise, go to Step 5.
Step 5. Perform the branching operation. Add the set of subproblems generated
to A and go to Step 3.

Figure 3: Description of the generic branch and cut algorithm

obeying a (relatively) small set of inequalities. These inequalities are typically the ones used in the
initial LP relaxation. Now let P be the convex hull of incidence vectors of members of F . Then we
know by Weyl’s Theorem (see [26]) that there exists a finite set L of inequalities valid for P such
that

P = {x ∈ Rn : ax ≤ β ∀ (a, β) ∈ L}. (1)

The inequalities in L are the potential cutting planes to be added to the relaxation as needed.
Unfortunately, it is usually difficult, if not impossible, to enumerate all of inequalities in L or we
could simply solve the problem using linear programming. Instead, they are defined implicitly and
we use separation algorithms and heuristics to generate these inequalities when they are violated.
In Figure 1, we describe more precisely how the bounding operation is carried out in branch and
cut.

Once we have failed to either prune the current subproblem or separate the current fractional
solution from P, we are forced to branch. The branching operation is accomplished by specifying a
set of hyperplanes which divide the current subproblem in such a way that the current solution is
not feasible for the LP relaxation of any of the new subproblems. For example, in a combinatorial
optimization problem, branching could be accomplished simply by fixing a variable whose current
value is fractional to 0 in one branch and 1 in the other. The procedure is described more formally
in Figure 2. Figure 3 gives a high level description of the generic branch and cut algorithm.

As with cutting planes, the columns of A can also be defined implicitly if n is large. If column

5

i is not present in the current matrix, then variable xi is implicitly taken to have value zero. The
process of dynamically generating variables is called pricing in the jargon of linear programming,
but can also be viewed as that of generating cutting planes for the dual of the current LP relaxation.
Hence, LP-based branch and bound algorithms in which the variables are generated dynamically
when needed are known as branch and price algorithms. In [5], Barnhart, et al. provide a thorough
review of these methods.

When both variables and cutting planes are generated dynamically during LP-based branch
and bound, the technique becomes known as branch, cut, and price (BCP). In such a scheme, there
is a pleasing symmetry between the treatment of cuts and that of variables. We further examine
this symmetry later in the manual. For now, however, it is important to note that while branch,
cut, and price does combine ideas from both branch and cut and branch and price (which are very
similar to each other anyway), combining the two techniques requires much more sophisticated
methods than either one requires on its own. This is an important idea that is at the core of our
design.

In the remainder of the manual, we often use the term search tree. This term derives from the
common representation of the list of subproblems as the nodes of a graph in which each subproblem
is connected only to its parent and its children. Storing the subproblems in such a form is an
important aspect of our global data structures. Since the subproblems correspond to the nodes of
this graph, they are sometimes be referred to as nodes in the search tree or simply as nodes. The
root node or root of the tree is the node representing the initial subproblem.

5 Design of SYMPHONY

SYMPHONY was designed with two major goals in mind—portability and ease of use. With
respect to ease of use, we aimed for a “black box” design, whereby the user would not be required
to know anything about the implementation of the library, but only about the user interface. With
respect to portability, we aimed not only for it to be possible to use the framework in a wide
variety of settings and on a wide variety of hardware, but also for it to perform effectively in all
these settings. Our primary measure of effectiveness was how well the framework would perform
in comparison to a problem-specific (or hardware-specific) implementation written “from scratch.”

It is important to point out that achieving such design goals involves a number of very difficult
tradeoffs. For instance, ease of use is quite often at odds with efficiency. In several instances, we
had to give up some efficiency to make the code easy to work with and to maintain a true black box
implementation. Maintaining portability across a wide variety of hardware, both sequential and
parallel, also required some difficult choices. For example, solving large-scale problems on sequential
platforms requires extremely memory-efficient data structures in order to maintain the very large
search trees that can be generated. These storage schemes, however, are highly centralized and do
not scale well to large numbers of processors.

5.1 An Object-oriented Approach

As we have already alluded to, applying BCP to large-scale problems presents several difficult
challenges. First and foremost is designing methods and data structures capable of handling the
potentially huge numbers of cuts and variables that need to be accounted for during the solution
process. The dynamic nature of the algorithm requires that we must also be able to efficiently
move cuts and variables in and out of the active set of each search node at any time. A second,

6 5 DESIGN OF SYMPHONY

closely-related challenge is that of effectively dealing with the very large search trees that can be
generated for difficult problem instances. This involves not only the important question of how
to store the data, but also how to move it between modules during parallel execution. A final
challenge in developing a generic framework, such as SYMPHONY, is to deal with these issues
using a problem-independent approach.

Describing a node in the search tree consists of, among other things, specifying which cuts
and variables are initially active in the subproblem. In fact, the vast majority of the methods in
BCP that depend on the model are related to generating, manipulating, and storing the cuts and
variables. Hence, SYMPHONY can be considered an object-oriented framework with the central
“objects” being the cuts and variables. From the user’s perspective, implementing a BCP algorithm
using SYMPHONY consists primarily of specifying various properties of objects, such as how they
are generated, how they are represented, and how they should be realized within the context of a
particular subproblem.

With this approach, we achieved the “black box” structure by separating these problem-specific
functions from the rest of the implementation. The internal library interfaces with the user’s
subroutines through a well-defined Application Program Interface (API) (see Section 10) and inde-
pendently performs all the normal functions of BCP—tree management, LP solution, and cut pool
management, as well as inter-process communication (when parallelism is employed). Although
there are default options for many of the operations, the user can also assert control over the
behavior of the algorithm by overriding the default methods or by parameter setting.

Although we have described our approach as being “object-oriented,” we would like to point
out that SYMPHONY is implemented in C, not C++. To avoid inefficiencies and enhance the
modularity of the code (allowing for easy parallelization), we used a more “function-oriented”
approach for the implementation of certain aspects of the framework. For instance, methods used
for communicating data between modules are not naturally “object-oriented” because the type of
data being communicated is usually not known by the message-passing interface. It is also common
that efficiency considerations require that a particular method be performed on a whole set of
objects at once rather than on just a single object. Simply invoking the same method sequentially
on each of the members of the set can be extremely inefficient. In these cases, it is far better to
define a method which operates on the whole set at once. In order to overcome these problems, we
have also defined a set of interface functions, which are associated with the computational modules.
These function is described in detail in Section 10.

5.2 Data Structures and Storage

Both the memory required to store the search tree and the time required to process a node are
largely dependent on the number of objects (cuts and variables) that are active in each subproblem.
Keeping this active set as small as possible is one of the keys to efficiently implementing BCP. For
this reason, we chose data structures that enhance our ability to efficiently move objects in and
out of the active set. Allowing sets of cuts and variables to move in and out of the linear programs
simultaneously is one of the most significant challenges of BCP. We do this by maintaining an
abstract representation of each global object that contains information about how to add it to a
particular LP relaxation.

In the literature on linear and integer programming, the terms cut and row are typically used
interchangeably. Similarly, variable and column are often used with similar meanings. In many
situations, this is appropriate and does not cause confusion. However, in object-oriented BCP

5.2 Data Structures and Storage 7

frameworks, such as SYMPHONY or ABACUS [19, 18], a cut and a row are fundamentally different
objects. A cut (also referred to as a constraint) is a user-defined representation of an abstract
object which can only be realized as a row in an LP matrix with respect to a particular set of active
variables. Similarly, a variable is a representation which can only be realized as a column of an LP
matrix with respect to a particular set of cuts. This distinction between the representation and the
realization of objects is a crucial design element and is what allows us to effectively address some of
the challenges inherent in BCP. In the remainder of this section, we further discuss this distinction
and its implications.

5.2.1 Variables

In SYMPHONY, problem variables are represented by a unique global index assigned to each
variable by the user. This index represents each variable’s position in a “virtual” global list known
only to the user. The main requirement of this indexing scheme is that, given an index and a list of
active cuts, the user must be able to generate the corresponding column to be added to the matrix.
As an example, in problems where the variables correspond to the edges of an underlying graph,
the index could be derived from a lexicographic ordering of the edges (when viewed as ordered pairs
of nodes).

This indexing scheme provides a very compact representation, as well as a simple and effective
means of moving variables in and out of the active set. However, it means that the user must have a
priori knowledge of all problem variables and a method for indexing them. For combinatorial models
such as the Traveling Salesman Problem, this does not present a problem. However, for some set
partitioning models, for instance, the number of columns may not be known in advance. Even if the
number of columns is known in advance, a viable indexing scheme may not be evident. Eliminating
the indexing requirement by allowing variables to have abstract, user-defined representations (such
as we do for cuts), would allow for more generality, but would also sacrifice some efficiency. A
hybrid scheme, allowing the user to have both indexed and algorithmic variables (variables with
user-defined representations) is planned for a future version of SYMPHONY.

For efficiency, the problem variables can be divided into two sets, the base variables and the extra
variables. The base variables are active in all subproblems, whereas the extra variables can be added
and removed. There is no theoretical difference between base variables and extra variables; however,
designating a well-chosen set of base variables can significantly increase efficiency. Because they
can move in and out of the problem, maintaining extra variables requires additional bookkeeping
and computation. If the user has reason to believe a priori that a variable is “good” or has a high
probability of having a non-zero value in some optimal solution to the problem, then that variable
should be designated as a base variable. It is up to the user to designate which variables should be
active in the root subproblem. Typically, when column generation is used, only base variables are
active. Otherwise, all variables must be active in the root node.

5.2.2 Constraints

Because the global list of potential constraints (also called cuts) is not usually known a priori or
is extremely large, constraints cannot generally be represented simply by a user-assigned index.
Instead, each constraint is assigned a global index only after it becomes active in some subproblem.
It is up to the user, if desired, to designate a compact representation for each class of constraints that
is to be generated and to implement subroutines for converting from this compact representation
to a matrix row, given the list of active variables. For instance, suppose that the set of nonzero

8 5 DESIGN OF SYMPHONY

variables in a particular class of constraints corresponds to the set of edges across a cut in a graph.
Instead of storing the indices of each variable explicitly, one could simply store the set of nodes on
one side (“shore”) of the cut as a bit array. The constraint could then be constructed easily for
any particular set of active variables (edges).

Just as with variables, the constraints are divided into core constraints and extra constraints.
The core constraints are those that are active in every subproblem, whereas the extra constraints
can be generated dynamically and are free to enter and leave as appropriate. Obviously, the set of
core constraints must be known and constructed explicitly by the user. Extra constraints, on the
other hand, are generated dynamically by the cut generator as they are violated. As with variables,
a good set of core constraints can have a significant effect on efficiency.

Note that the user is not required to designate a compact representation scheme. Constraints
can simply be represented explicitly as matrix rows with respect to the global set of variables.
However, designating a compact form can result in large reductions in memory use if the number
of variables in the problem is large.

5.2.3 Search Tree

Having described the basics of how objects are represented, we now describe the representation of
search tree nodes. Since the base constraints and variables are present in every subproblem, only
the indices of the extra constraints and variables are stored in each node’s description. A complete
description of the current basis is maintained to allow a warm start to the computation in each
search node. This basis is either inherited from the parent, computed during strong branching (see
Section 6.2.3), or comes from earlier partial processing of the node itself (see Section 6.3.3). Along
with the set of active objects, we must also store the identity of the object(s) which were branched
upon to generate the node. The branching operation is described in Section 6.2.3.

Because the set of active objects and the status of the basis do not tend to change much
from parent to child, all of these data are stored as differences with respect to the parent when
that description is smaller than the explicit one. This method of storing the entire tree is highly
memory-efficient. The list of nodes that are candidates for processing is stored in a heap ordered
by a comparison function defined by the search strategy (see 6.3). This allows efficient generation
of the next node to be processed.

5.3 Modular Implementation

SYMPHONY’s functions are grouped into five independent computational modules. This modular
implementation not only facilitates code maintenance, but also allows easy and highly configurable
parallelization. Depending on the computational setting, the modules can be compiled as either (1)
a single sequential code, (2) a multi-threaded shared-memory parallel code, or (3) separate processes
running in distributed fashion over a network. The modules pass data to each other either through
shared memory (in the case of sequential computation or shared-memory parallelism) or through
a message-passing protocol defined in a separate communications API (in the case of distributed
execution). an schematic overview of the modules is presented in Figure 4. In the remainder of
the section, we describe the modularization scheme and the implementation of each module in a
sequential environment.

5.3 Modular Implementation 9

+ generate children and
 add to candidate list

+ store problem data

+ service requests for data

+ compute initial upper bound

+ store best solution

+ handle i/o

Master

Cut Pool

Tree Manager

+ maintain a list of

 + return all cuts violated by a

+ maintain search tree

LP Solver

Cut Generator
+ generate cuts violated by a

 "effective" inequalities

+ track upper bound

+ service requests for

 particular LP solution

 particular LP solution

+ display solutions

+ input user cuts

GUI

The Modules of Branch, Cut, and Price

 active node data

+ process subproblems

+ send cuts to cut pool

+ check feasibility

+ select branching objects

send data

C
uts

parameters

root node send data

request data

node data

upper bound

cut list

copy cuts

subtree is finished

new cuts

LP solution

violated cuts

L
P

So
l

fe
as

ib
le

 s
ol

ut
io

n

re
qu

es
t d

at
a

Figure 4: Schematic overview of the branch, cut, and price algorithm

10 5 DESIGN OF SYMPHONY

5.3.1 The Master Module

The master module includes functions that perform problem initialization and I/O. These functions
implement the following tasks:

• Read in the parameters from a data file.

• Read in the data for the problem instance.

• Compute an initial upper bound using heuristics.

• Perform problem preprocessing.

• Initialize the BCP algorithm by sending data for the root node to the tree manager.

• Initialize output devices and act as a central repository for output.

• Process requests for problem data.

• Receive new solutions and store the best one.

• Receive the message that the algorithm is finished and print out data.

• Ensure that all modules are still functioning.

5.3.2 The Tree Manager Module

The tree manager controls the overall execution of the algorithm. It tracks the status of all processes,
as well as that of the search tree, and distributes the subproblems to be processed to the LP
module(s). Functions performed by the tree manager module are:

• Receive data for the root node and place it on the list of candidates for processing.

• Receive data for subproblems to be held for later processing.

• Handle requests from linear programming modules to release a subproblem for processing.

• Receive branching object information, set up data structures for the children, and add them
to the list of candidate subproblems.

• Keep track of the global upper bound and notify all LP modules when it changes.

• Write current state information out to disk periodically to allow a restart in the event of a
system crash.

• Keep track of run data and send it to the master program at termination.

5.4 SYMPHONY Overview 11

5.3.3 The Linear Programming Module

The linear programming (LP) module is the most complex and computationally intensive of the
five processes. Its job is to perform the bounding and branching operations. These operations are,
of course, central to the performance of the algorithm. Functions performed by the LP module are:

• Inform the tree manager when a new subproblem is needed.

• Receive a subproblem and process it in conjunction with the cut generator and the cut pool.

• Decide which cuts should be sent to the global pool to be made available to other LP modules.

• If necessary, choose a branching object and send its description back to the tree manager.

• Perform the fathoming operation, including generating variables.

5.3.4 The Cut Generator Module

The cut generator performs only one function—generating valid inequalities violated by the current
fractional solution and sending them back to the requesting LP process. Here are the functions
performed by the cut generator module:

• Receive an LP solution and attempt to separate it from the convex hull of all solutions.

• Send generated valid inequalities back to the LP solver.

• When finished processing a solution vector, inform the LP not to expect any more cuts in
case it is still waiting.

5.3.5 The Cut Pool Module

The concept of a cut pool was first suggested by Padberg and Rinaldi [27], and is based on the
observation that in BCP, the inequalities which are generated while processing a particular node
in the search tree are also generally valid and potentially useful at other nodes. Since generating
these cuts is usually a relatively expensive operation, the cut pool maintains a list of the “best” or
“strongest” cuts found in the tree so far for use in processing future subproblems. Hence, the cut
pool functions as an auxiliary cut generator. More explicitly, here are the functions of the cut pool
module:

• Receive cuts generated by other modules and store them.

• Receive an LP solution and return a set of cuts which this solution violates.

• Periodically purge “ineffective” and duplicate cuts to control its size.

5.4 SYMPHONY Overview

Currently, SYMPHONY is what is known as a single-pool BCP algorithm. The term single-pool
refers to the fact that there is a single central list of candidate subproblems to be processed, which
is maintained by the tree manager. Most sequential implementations use such a single-pool scheme.
However, other schemes may be used in parallel implementations. For a description of various types
of parallel branch and bound, see [14].

12 6 DETAILS OF THE IMPLEMENTATION

The master module begins by reading in the parameters and problem data. After initial I/O
is completed, subroutines for finding an initial upper bound and constructing the root node are
executed. During construction of the root node, the user must designate the initial set of active
cuts and variables, after which the data for the root node are sent to the tree manager to initialize
the list of candidate nodes. The tree manager in turn sets up the cut pool module(s), the linear
programming module(s), and the cut generator module(s). All LP modules are marked as idle.
The algorithm is now ready for execution.

In the steady state, the tree manager functions control the execution by maintaining the list of
candidate subproblems and sending them to the LP modules as they become idle. The LP modules
receive nodes from the tree manager, process them, branch (if required), and send back the identity
of the chosen branching object to the tree manager, which in turn generates the children and places
them on the list of candidates to be processed (see Section 6.2.3 for a description of the branching
operation). A schematic summary of the algorithm is shown in Figure 4.

The preference ordering for processing nodes is a run-time parameter. Typically, the node with
the smallest lower bound is chosen to be processed next since this strategy minimizes the overall
size of the search tree. However, at times, it is advantageous to dive down in the tree. The concepts
of diving and search chains, introduced in Section 6.3, extend the basic “best-first” approach.

We mentioned earlier that cuts and variables can be treated in a somewhat symmetric fashion.
However, it should be clear by now that our current implementation favors the implementation of
branch and cut algorithms, where the computational effort spent generating cuts dominates that of
generating variables. Our methods of representation also clearly favor such problems. In a future
version of the software, we plan to erase this bias by adding additional functionality for handling
variable generation and storage. This is the approach already taken by of COIN/BCP [8]. For
more discussion of the reasons for this bias and the differences between the treatment of cuts and
variables, see Section 6.2.2.

6 Details of the Implementation

6.1 The Master Module

The primary functions performed by the master module were listed in Section 5.3.1. If needed,
the user must provide a routine to read problem-specific parameters in from the parameter file.
She must also provide a subroutine for upper bounding if desired, though upper bounds can also
be provided explicitly. A good initial upper bound can dramatically decrease the solution time
by allowing more variable-fixing and earlier pruning of search tree nodes. If no upper bounding
subroutine is available, then the two-phase algorithm, in which a good upper bound is found quickly
in the first phase using a reduced set of variables can be advantageous. See Section 6.3.3 for details.
The user’s only unavoidable obligation during pre-processing is to specify the list of base variables
and, if desired, the list of extra variables that are to be active in the root node. Again, we point
out that selecting a good set of base variables can make a marked difference in solution speed,
especially using the two-phase algorithm.

6.2 The Linear Programming Module

The LP module is at the core of the algorithm, as it performs the processing and bounding opera-
tions for each subproblem. A schematic diagram of the LP solver loop is presented in Fig. 5. The
details of the implementation are discussed in the following sections.

6.2 The Linear Programming Module 13

Branch

Solve current LP relaxation

Test for fathoming

Test for feasibility

Fix variables

Remove ineffective cuts

Send effective cuts to global pool

Receive cuts from generator/pool

Send solution to cut generator/pool

Add cuts from local pool to LP

Fathom

Compare branching candidates

Select branching candidates

Branch

Fathom

Restore feasibility

Generate variables

New variables generated

Figure 5: Overview of the LP solver loop

14 6 DETAILS OF THE IMPLEMENTATION

6.2.1 The LP Engine

SYMPHONY requires the use of a third-party callable library (referred to as the LP engine or
LP library) to solve the LP relaxations once they are formulated. As with the user functions,
SYMPHONY communicates with the LP engine through an API that converts SYMPHONY’s
internal data structures into those of the LP engine. Currently, the framework will only work
with advanced, simplex-based LP engines, such as CPLEX [10], since the LP engine must be able
to accept an advanced basis, and provide a variety of data to the framework during the solution
process. The internal data structures used for maintaining the LP relaxations are similar to those
of CPLEX and matrices are stored in the standard column-ordered format.

6.2.2 Managing the LP Relaxation

The majority of the computational effort of BCP is spent solving LPs and hence a major emphasis
in the development was to make this process as efficient as possible. Besides using a good LP
engine, the primary way in which this is done is by controlling the size of each relaxation, both in
terms of number of active variables and number of active constraints.

The number of constraints is controlled through use of a local pool and through purging of
ineffective constraints. When a cut is generated by the cut generator, it is first sent to the local
cut pool. In each iteration, up to a specified number of the strongest cuts (measured by degree
of violation) from the local pool are added to the problem. Cuts that are not strong enough
to be added to the relaxation are eventually purged from the list. In addition, cuts are purged
from the LP itself when they have been deemed ineffective for more than a specified number of
iterations, where ineffective is defined as either (1) the corresponding slack variable is positive, (2)
the corresponding slack variable is basic, or (3) the dual value corresponding to the row is zero (or
very small). Cuts that have remained effective in the LP for a specified number of iterations are
sent to the global pool where they can be used in later search nodes. Cuts that have been purged
from the LP can be made active again if they later become violated.

The number of variables (columns) in the relaxation is controlled through reduced cost fixing
and dynamic column generation. Periodically, each active variable is priced to see if it can be fixed
by reduced cost. That is, the LP reduced cost is examined in an effort to determine whether fixing
that variable at one of its bounds would remove improving solutions; if not, the variable is fixed and
removed from consideration. If the matrix is full at the time of the fixing, meaning that all unfixed
variables are active, then the fixing is permanent for that subtree. Otherwise, it is temporary and
only remains in force until the next time that columns are dynamically generated.

Because SYMPHONY was originally designed for combinatorial problems with relatively small
numbers of variables, techniques for performing dynamic column generation are somewhat unre-
fined. Currently, variables are priced out sequentially by index, which can be costly. To improve the
process of pricing variables, we plan to increase the symmetry between our methods for handling
variables and those for handling cuts. This includes (1) allowing user-defined, abstract represen-
tations for variables, (2) allowing the use of “variable generators” analogous to cut generators,
(3) implementing both global and local pools for variables, (4) implementing heuristics that help
determine the order in which the indexed variables should be priced, and (5) allowing for methods
of simultaneously pricing out large groups of variables. Much of this is already implemented in
COIN/BCP.

Because pricing is computationally burdensome, it currently takes place only either (1) before
branching (optional), or (2) when a node is about to be pruned (depending on the phase—see the

6.3 The Tree Manager Module 15

description of the two-phase algorithm in Sect. 6.3.3). To use dynamic column generation, the user
must supply a subroutine which generates the column corresponding to a particular user index,
given the list of active constraints in the current relaxation. When column generation occurs, each
column not currently active that has not been previously fixed by reduced cost is either priced out
immediately, or becomes active in the current relaxation. Only a specified number of columns may
enter the problem at a time, so when that limit is reached, column generation ceases. For further
discussion of column generation, see Sect. 6.3.3, where the two-phase algorithm is described.

Since the matrix is stored in compressed form, considerable computation may be needed to
add and remove rows and columns. Hence, rows and columns are only physically removed from
the problem when there are sufficiently many to make it “worthwhile.” Otherwise, deleted rows
and columns remain in the matrix but are simply ignored by the computation. Note that because
ineffective rows left in the matrix increase the size of the basis unnecessarily, it is usually advisable
to adopt an aggressive strategy for row removal.

6.2.3 Branching

Branching takes place whenever either (1) both cut generation and column generation (if performed)
have failed; (2) “tailing off” in the objective function value has been detected; or (3) the user chooses
to force branching. Branching can take place on cuts or variables and can be fully automated or
fully controlled by the user, as desired. Branching can result in as many children as the user desires,
though two is typical. Once it is decided that branching will occur, the user must either select the
list of candidates for strong branching (see below for the procedure) or allow SYMPHONY to do so
automatically by using one of several built-in strategies, such as branching on the variable whose
value is farthest from being integral. The number of candidates may depend on the level of the
current node in the tree—it is usually best to expend more effort on branching near the top of the
tree.

After the list of candidates is selected, each candidate is pre-solved, by performing a specified
number of iterations of the dual simplex algorithm in each of the resulting subproblems. Based
on the objective function values obtained in each of the potential children, the final branching
object is selected, again either by the user or by built-in rule. This procedure of using exploratory
LP information in this manner to select a branching candidate is commonly referred to as strong
branching. When the branching object has been selected, the LP module sends a description of that
object to the tree manager, which then creates the children and adds them to the list of candidate
nodes. It is then up to the tree manager to specify which node the now-idle LP module should
process next. This issue is further discussed below.

6.3 The Tree Manager Module

6.3.1 Managing the Search Tree

The tree manager’s primary job is to control the execution of the algorithm by deciding which
candidate node should be chosen as the next to be processed. This is done using either one of
several built-in rules or a user-defined rule. Usually, the goal of the search strategy is to minimize
overall running time, but it is sometimes also important to find good feasible solutions early in the
search process. In general, there are two ways to decrease running time—either by decreasing the
size of the search tree or by decreasing the time needed to process each search tree node.

16 6 DETAILS OF THE IMPLEMENTATION

To minimize the size of the search tree, the strategy is to select consistently that candidate node
with the smallest associated lower bound. In theory, this strategy, sometimes called best-first, will
lead the smallest possible search tree. However, we need to consider the time required to process
each search tree node as well. This is affected by both the quality of the current upper bound
and by such factors as communication overhead and node set-up costs. When considering these
additional factors, it is sometimes be more effective to deviate from the best-first search order. We
discuss the importance of such strategies below.

6.3.2 Search Chains and Diving

One reason for not strictly enforcing the search order is because it is somewhat expensive to
construct a search node, send it to the LP solver, and set it up for processing. If, after branching,
we choose to continue processing one of the children of the current subproblem, we avoid the set-up
cost, as well as the cost of communicating the node description of the retained child subproblem
back to the tree manager. This is called diving and the resulting chain of nodes is called a search
chain. There are a number of rules for deciding when an LP module should be allowed to dive.
One such rule is to look at the number of variables in the current LP solution that have fractional
values. When this number is low, there may be a good chance of finding a feasible integer solution
quickly by diving. This rule has the advantage of not requiring any global information. We also
dive if one of the children is “close” to being the best node, where “close” is defined by a chosen
parameter.

In addition to the time saved by avoiding reconstruction of the LP in the child, diving has the
advantage of often leading quickly to the discovery of feasible solutions, as discussed above. Good
upper bounds not only allow earlier pruning of unpromising search chains, but also should decrease
the time needed to process each search tree node by allowing variables to be fixed by reduced cost.

6.3.3 The Two-Phase Algorithm

If no heuristic subroutine is available for generating feasible solutions quickly, then a unique two-
phase algorithm can also be invoked. In the two-phase method, the algorithm is first run to
completion on a specified set of core variables. Any node that would have been pruned in the first
phase is instead sent to a pool of candidates for the second phase. If the set of core variables is
small, but well-chosen, this first phase should be finished quickly and should result in a near-optimal
solution. In addition, the first phase will produce a list of useful cuts. Using the upper bound and
the list of cuts from the first phase, the root node is repriced—that is, it is reprocessed with the
full set of variables and cuts. The hope is that most or all of the variables not included in the first
phase will be priced out of the problem in the new root node. Any variable thus priced out can be
eliminated from the problem globally. If we are successful at pricing out all of the inactive variables,
we have shown that the solution from the first phase was, in fact, optimal. If not, we must go back
and price out the (reduced) set of extra variables in each leaf of the search tree produced during the
first phase. We then continue processing any node in which we fail to price out all the variables.

In order to avoid pricing variables in every leaf of the tree, we can trim the tree before the start
of the second phase. Trimming the tree consists of eliminating the children of any node for which
each child has lower bound above the current upper bound. We then reprocess the parent node
itself. This is typically more efficient, since there is a high probability that, given the new upper
bound and cuts, we will be able to prune the parent node and avoid the task of processing each
child individually.

6.4 The Cut Generator Module 17

6.4 The Cut Generator Module

To implement the cut generator process, the user must provide a function that accepts an LP
solution and returns cuts violated by that solution to the LP module. In parallel configurations,
each cut is returned immediately to the LP module, rather than being passed back as a group once
the function exits. This allows the LP to begin adding cuts and solving the current relaxation
before the cut generator is finished if desired. Parameters controlling if and when the LP should
begin solving the relaxation before the cut generator is finished can be set by the user.

6.5 The Cut Pool Module

6.5.1 Maintaining and Scanning the Pool

The cut pool’s primary job is to receive a solution from an LP module and return cuts from the
pool that are violated by it. The cuts are stored along with two pieces of information—the level
of the tree on which the cut was generated, known simply as the level of the cut, and the number
of times it has been checked for violation since the last time it was actually found to be violated,
known as the number of touches. The number of touches can be used as a simplistic measure of
its effectiveness. Since the pool can get quite large, the user can choose to scan only cuts whose
number of touches is below a specified threshold and/or cuts that were generated on a level at or
above the current one in the tree. The idea behind this second criterion is to try to avoid checking
cuts that were not generated “nearby” in the tree, as they are less likely to be effective. Any cut
generated at a level in the tree below the level of the current node must have been generated in
a different part of the tree. Although this is admittedly a naive method, it does seem to work
reasonably well.

On the other hand, the user may define a specific measure of quality for each cut to be used
instead. For example, the degree of violation is an obvious candidate. This measure of quality must
be computed by the user, since the cut pool module has no knowledge of the cut data structures.
The quality is recomputed every time the user checks the cut for violation and a running average
is used as the global quality measure. The cuts in the pool are periodically sorted by this measure
and only the highest quality cuts are checked each time. All duplicate cuts, as well as all cuts
whose number of touches exceeds or whose quality falls below specified thresholds, are periodically
purged from the pool to keep it as small as possible.

6.5.2 Using Multiple Pools

For several reasons, it may be desirable to have multiple cut pools. When there are multiple cut
pools, each pool is initially assigned to a particular node in the search tree. After being assigned to
that node, the pool services requests for cuts from that node and all of its descendants until such
time as one of its descendants gets assigned to another cut pool. After that, it continues to serve
all the descendants of its assigned node that are not assigned to other cut pools.

Initially, the first cut pool is assigned to the root node. All other cut pools are unassigned.
During execution, when a new node is sent to be processed, the tree manager must determine which
cut pool the node should be serviced by. The default is to use the same cut pool as its parent.
However, if there is currently an idle cut pool process (either it has never been assigned to any node
or all the descendants of its assigned node have been processed or reassigned), then that cut pool
is assigned to this new node. All the cuts currently in the cut pool of its parent node are copied to
the new pool to initialize it, after which the two pools operate independently on their respective

18 7 PARALLELIZING BCP

subtrees. When generating cuts, the LP process sends the new cuts to the cut pool assigned to
service the node during whose processing the cuts were generated.

The primary motivation behind the idea of multiple cut pools is two-fold. First, we want simply
to limit the size of each pool as much as possible. By limiting the number of nodes that a cut pool
has to service, the number of cuts in the pool will be similarly limited. This not only allows cut
storage to spread over multiple processors, and hence increases the available memory, but at the
same time, the efficiency with which the cut pool can be scanned for violated cuts is also increased.
A secondary reason for maintaining multiple cut pools is that it allows us to limit the scanning of
cuts to only those that were generated in the same subtree as the current search node. As described
above, this helps focus the search and should increase the efficiency and effectiveness of the search.
This idea also allows us to generate locally valid cuts, such as the classical Gomory cuts (see [26]).

7 Parallelizing BCP

Because of the clear partitioning of work that occurs when the branching operation generates
new subproblems, branch and bound algorithms lend themselves well to parallelization. As a
result, there is already a significant body of research on performing branch and bound in parallel
environments. We again point the reader to the survey of parallel branch and bound algorithms
by Gendron and Crainic [14], as well as other references such as [11, 16, 31, 20].

In parallel BCP, as in general branch and bound, there are two major sources of parallelism.
First, it is clear that any number of subproblems on the current candidate list can be processed
simultaneously. Once a subproblem has been added to the list, it can be properly processed
before, during, or after the processing of any other subproblem. This is not to say that processing
a particular node at a different point in the algorithm won’t produce different results—it most
certainly will—but the algorithm will terminate correctly in any case. The second major source of
parallelism is to parallelize the processing of individual subproblems. By allowing separation to be
performed in parallel with the solution of the linear programs, we can theoretically process a node
in little more than the amount of time it takes to solve the sequence of LP relaxations. Both of
these sources of parallelism can be easily exploited using the SYMPHONY framework.

The most straightforward parallel implementation, which is the one we currently employ, is
a master-slave model, in which there is a central manager responsible for partitioning the work
and parceling it out to the various slave processes that perform the actual computation. The
reason we chose this approach is because it allows memory-efficient data structures for sequential
computation and yet is conceptually easy to parallelize. Unfortunately, this approach does have
limited scalability. For further discussions on the scalibility of BCP algorithms and approaches to
improving it, see [21] and [22].

7.1 Details of the Parallel Implementation

7.1.1 Parallel Configurations

SYMPHONY supports numerous configurations, ranging from completely sequential to fully par-
allel, allowing efficient execution in many different computational settings. As described in the
previous section, there are five modules in the standard distributed configuration. Various subsets
of these modules can be combined to form separate executables capable of communicating with
each other across a network. When two or more modules are combined, they simply communicate

19

through shared-memory instead of through message-passing. However, they are also forced to run
in sequential fashion in this case, unless the user chooses to enable threading using an OpenMP
compliant compiler (see next section).

As an example, the default distributed configuration includes a separate executable for each
module type, allowing full parallelism. However, if cut generation is fast and not memory-intensive,
it may not be worthwhile to have the LP solver and its associated cut generator work independently,
as this increases communication overhead without much potential benefit. In this case, the cut
generator functions can be called directly from the LP solver, creating a single, more efficient
executable.

7.1.2 Inter-process Communication

SYMPHONY can utilize any third-party communication protocol supporting basic message-passing
functions. All communication subroutines interface with SYMPHONY through a separate commu-
nications API. Currently, PVM [13] is the only message-passing protocol supported, but interfacing
with another protocol is a straightforward exercise.

Additionally, it is possible to configure the code to run in parallel using threading to process mul-
tiple search tree nodes simultaneously. Currently, this is implemented using OpenMP compiler di-
rectives to specify the parallel regions of the code and perform memory locking functions. Compiling
the code with an OpenMP compliant compiler will result in a shared-memory parallel executable.
For a list of OpenMP compliant compilers and other resources, visit http://www.openmp.org.

7.1.3 Fault Tolerance

Fault tolerance is an important consideration for solving large problems on computing networks
whose nodes may fail unpredictably. The tree manager tracks the status of all processes and can
restart them as necessary. Since the state of the entire tree is known at all times, the most that will
be lost if an LP process or cut generator process is killed is the work that had been completed on
that particular search node. To protect against the tree manager itself or a cut pool being killed,
full logging capabilities have been implemented. If desired, the tree manager can write out the
entire state of the tree to disk periodically, allowing a warm restart if a fault occurs. Similarly, the
cut pool process can be warm-started from a log file. This not only allows for fault tolerance but
also for full reconfiguration in the middle of solving a long-running problem. Such reconfiguration
could consist of anything from adding more processors to moving the entire solution process to
another network.

8 Quick Start Guide

BB (Single- or Multi-Process Optimization over Networks) Version 3.0.1 is a powerful environment
for implementing branch, cut, and price algorithms. The subroutines in the SYMPHONY library
comprise a state-of-the-art solver which is designed to be completely modular and easy to port
to various problem settings. All library subroutines are generic—their implementation does not
depend on the the problem-setting. To develop a full-scale, parallel branch and cut algorithm, the
user has only to specify a few problem-specific functions such as preprocessing and separation. The
vast majority of the computation takes place within a “black box,” of which the user need have no
knowledge. SYMPHONY communicates with the user’s routines through well-defined interfaces

20 8 QUICK START GUIDE

and performs all the normal functions of branch and cut—tree management, LP solution, cut pool
management, as well as inter-process or inter-thread communication. Although there are default
options, the user can also assert control over the behavior of SYMPHONY through a myriad of
parameters and optional subroutines. SYMPHONY can be built in a variety of configurations,
ranging from fully parallel to completely sequential, depending on the user’s needs. The library
runs serially on almost any platform, and can also run in parallel in either a fully distributed
environment (network of workstations) or shared-memory environment simply by changing a few
options in the makefile. To run in a distributed environment, the user must have installed Parallel
Virtual Machine (PVM) software, available for free from Oak Ridge National Laboratories at
http://www.ccs.ornl.gov/pvm/ . To run in a shared memory environment, the user must have
installed an OpenMP compliant compiler. A cross-platform compiler called Omni, which uses cc
or gcc as a back end, is available for free download at http://pdplab.trc.rwcp.or.jp/Omni.
. This section of the manual is concerned with the detailed specifications needed to develop an
application using SYMPHONY. It is assumed that the user has already read the first part of the
manual, which provides a high-level introduction to parallel branch, cut, and price and the overall
design and use of SYMPHONY.

8.1 Compiling the Sample Application with Unix Operating Systems

Here is a sketch outline of how to get started with SYMPHONY in Unix. This is basically the
same information contained in the README file that comes with the distribution and will lead
you through the steps required to compile the sample application, a VRP and TSP solver. Because
SYMPHONY is intended to run over nonhomogeneous networks of workstations, installation is
not fully automated, but requires the user to make minor edits to the Makefile. With this setup,
compilation for multiple architectures and configurations can be performed in a single directory
without reconfiguring or ”cleaning”. This is convenient on nonhomogeneous networks, but it means
that you might need to edit the Makefile to get SYMPHONY to compile. For the casual user, this
editing is limited to providing some path names.

For more information about how to use the SYMPHONY VRP/TSP solver after compilation,
see the file SYMPHONY-3.0.1/Vrp/README.

8.1.1 Preparing for Sample Compilation.

• Download the file SYMPHONY-3.0.1.tgz.

• Unpack the distribution with “tar -xzf SYMPHONY-3.0.1.tgz”. This will create a subdi-
rectory called SYMPHONY-3.0.1/ containing the distribution.

• Edit the makefile (SYMPHONY-3.0.1/Makefile) to reflect your environment. Only minor edits
should be required. An explanation of what has to be set is contained in the comments in
the makefile.

8.1.2 Compiling the Sequential Version.

• Type “make” in the SYMPHONY-3.0.1/ directory. This will first make the SYMPHONY
library (sequential version). After making the SYMPHONY library, make will compile the
user code and link the executable for the sample application, a vehicle routing and traveling
salesman problem solver. The name of the executable will be

8.1 Compiling the Sample Application with Unix Operating Systems 21

SYMPHONY-3.0.1/Vrp/bin.$(ARCH)/master tm lp cg cp,

indicating that all modules are contained in a single executable. The makefile must be mod-
ified to enable parallel execution of the code.

• After the code is compiled, you are free to type “make clean” if you want to save disk space.
You should only have to remake the library if you change something in SYMPHONY’s
internal files.

• To test the sample program, a sample data file is included with the distribution. Type

Vrp/bin.$(ARCH)/master tm lp cg cp -F sample.vrp -N 5 -u 522

in the SYMPHONY-3.0.1/ directory. The -N argument gives the number of routes, which must
be specified in advance. The -u argument supplies an initial upper bound which is used until
a better feasible solution is found. TSP instances can also be solved by adding the option -T
TSP. In the case of the TSP, the number of routes does not need to be specified. You can get
additional problem data files from from http://branchandcut.org/VRP/data/ or the
TSPLIB (http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/) .
The file format is described on the TSPLIB Web site.

8.1.3 Compiling the Shared Memory Version.

• To compile a shared memory version, obtain an OpenMP compliant compiler, such as Omni
(free from http://phase.etl.go.jp/Omni) . Other options are listed at the OpenMP Web
site (http://www.openmp.org) .

• Follow the instructions above for configuring the makefile. Set the variable CC to the compiler
name in the makefile and compile as above. Note that if you have previously compiled the
sequential version, then you should first type make clean all, as this version uses the same
directories. With one thread allowed, it should run exactly the same as the sequential version
so there is no need to compile both versions.

• Voila, you have a shared memory parallel solver. As above, to test the sample program, a sam-
ple data file is included with the distribution. Type Vrp/bin.$(ARCH)/master tm lp cg cp
-F sample.vrp -N 5 -u 522 in the SYMPHONY-3.0.1/ directory. The -N argument gives
the number of routes, which must be specified in advance. The -u argument supplies an
initial upper bound which is used until a better feasible solution is found. TSP instances
can also be solved by adding the option -T TSP. In the case of the TSP, the number of
routes does not need to be specified. You can get additional problem data files from from
http://branchandcut.org/VRP/data/ or the
TSPLIB (http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/) .
The file format is described on the TSPLIB Web site.

8.1.4 Compiling the Distributed Version.

• If you wish to compile a distributed version of the code, obtain and install the Parallel
Virtual Machine (PVM) software, available for free from Oak Ridge National Laboratories
at http://www.ccs.ornl.gov/pvm/ . See Section 9.6.1 for more notes on using PVM.

22 8 QUICK START GUIDE

• In the makefile, be sure to set the COMM PROTOCOL variable to PVM. Also, change one or more
of COMPILE IN TM, COMPILE IN LP, COMPILE IN CG, and COMPILE IN CP, to FALSE, or you will
end up with the sequential version. Various combinations of these variables will give you
different configurations and different executables. See Section 9.6.1 for more info on setting
them. Also, be sure to set the path variables in the makefile appropriately so that make can
find the PVM library.

• Type “make” in the SYMPHPONY-3.0.1 directory to make the distributed libraries. As in
Step 1 of the sequential version, you may type “make clean” after making the library. It
should not have to remade again unless you modify SYMPHONY’s internal files.

• After the SYMPHONY libraries, user code will be compiled and required executables linked.

• Make sure there are links from your $PVM ROOT/bin/$PVM ARCH/ directory to each of
the executables in the Vrp/bin.$(ARCH) directory. This is required by PVM.

• Start the PVM daemon by typing “pvm” on the command line and then typing “quit”.

• To test the sample program, a sample data file is included with the distribution. Type
Vrp/bin.$(ARCH)/master -F sample.vrp -N 5 -u 522 in the SYMPHONY-3.0.1 directory
(note that the actual executable name may not be “master” if COMPILE IN TM is set to
TRUE; see Section 9.6.1 for more information on executable names.). The -N argument gives
the number of routes, which must be specified in advance. The -u argument supplies an
initial upper bound which is used until a better feasible solution is found. TSP instances
can also be solved by adding the option -T TSP. In the case of the TSP, the number of
routes does not need to be specified. You can get additional problem data files from from
http://branchandcut.org/VRP/data/ or the
TSPLIB (http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/) .
The file format is described on the TSPLIB Web site.

This should result in the successful compilation of the sample application. Once you have accom-
plished this much, you are well on your way to having an application of your own. Don’t be daunted
by the seemingly endless list of user function that you are about to encounter. Most of them are
optional or have default options. If you get lost, consult the source code for the sample application
to see how it’s done.

8.2 Compiling the Sample Application with Microsoft Windows

Here is a sketch outline of how to compile the sample application, a VRP and TSP solver, in
Microsoft Windows. This is the same information contained in the README file that comes
with the distribution. Direct support is provided for compilation under MS Visual Studio 6.0.
Compilation for other compilers should also be possible. Note that the windows version has some
limitations. Detailed timing information is not currently provided. Support is only provided for
running in sequential mode at this time.

• Download SYMPHONY-3.0.1.zip and unzip the archive. This will create a subdirectory called
SYMPHONY-3.0.1\ containing all the source files.

8.2 Compiling the Sample Application with Microsoft Windows 23

• In MS Visual C++ 6.0, open the workspace SYMPHONY-3.0.1\WIN32\vrp.dsw. Note that
there are two projects, one called “symphony” and one called “vrp”. The symphony project
contains the source code needed to build the internal library. The vrp project contains the
source code for the user-defined functions needed to build the sample application, a VRP and
TSP solver. Note that to develop a solver of your own, you would replace the VRP library
with one of your own. A template for doing so is provided (see the quick start guide in Section
??).

• By default, SYMPHONY is set up to use CPLEX 8.1 installed in a folder called “C:\ILOG\CPLEX81”.
To use a different LP solver or to specify a different location for CPLEX, there are a number
of changes that need to be made.

– You must specify the name of and path to the library to be linked. Do this by right-
clicking on the symphony project and choosing “Add Files to Project...” Then locate
the library file for the LP solver you are using (either CPLEX or OSL). For CPLEX,
you need the library called cplex**.lib, where ** is your CPLEX version. Make sure
to delete the old library dependency.

– You must set the include path for the solver header files. Do this by right-clicking on the
symphony project and choosing “Settings...” Then choose the “C/C++” tab, and choose
the category “Preprocessor” on the drop-down menu. Edit the path in the “Additional
include directories” window.

– You must set the compiler defines so that the right LP solver interface will be used.
Follow the procedure above to get to the preprocessor settings and edit the “Preprocessor
definitions.” Make sure that OSL is defined if you are using OSL or CPLEX is defined
if you are using CPLEX. DO NOT CHANGE COMPILER DEFINES NOT RELATED
TO THE LP SOLVER. Important note for OSL users: When using OSL in Windows,
you must also add OSLMSDLL to the list of definitions.

• Note that there are a number of additional compiler defines that control the functionality of
SYMPHONY. These defines are described in SYMPHONY-3.0.1\Makefile, a Unix-style make-
file included with the distribution. To enable the functionality associated with a particular
compiler define, simply add it to the list of defines under the preprocessor settings, as above.

• You must also be sure to have any “.dll” files required for your LP solver to be in your search
path. Either move the required .dll to the directory containing symphony.exe or add the path
to the “PATH” Windows environment variable.

• Once you have the proper settings for your LP solver, choose ”Build symphony.exe” from the
“Build” menu. This should successfully build the executable.

• To test the executable, right click on the symphony project, go to the “Debug” tab and
set the Program arguments to “-F SYMPHONY-3.0.1\sample.vrp -N 5 -u 522.” Note that
command-line switches are Unix-style. The argument to -N is the number of routes that
should be used in the solution and the -u argument supplies the solver with an initial upper
bound.

• Now choose “Execute” from the “Build” menu and the solver should solve the sample VRP
file.

24 8 QUICK START GUIDE

• Note that there is some functionality missing from the Windows version. Most prominently,
the timing functions do not work. I suppose this functionality should be easy to add. In
addition, the Windows version will only run in sequential mode for a variety of reasons.
However, it should be relatively easy to get it running in parallel if you can get PVM working
under Windows.

8.3 Developing a New Application

8.3.1 Unix

Developing a simple branch and bound solver can be done quite quickly using the template provided
in the SYMPHONY/Template/ directory. The simplest approach is to develop a sequential application,
sharing a single user data structure among all the modules. Using this approach, an application
can be developed by filling in only a few simple functions. Here are four simple steps to get up and
running.

1. Set the variable USERROOT in the makefile to be $(ROOT)/Template and type ”make”. As-
suming that the make file has already been modified appropriately, as described in Section
8.2, this should successfully compile the template code, although it will not run until it is
modified as described below.

2. Decide what run-time parameters you might need and what data has to be stored to describe
your instance. Edit the file Template/include/user.h, adding the appropriate fields to the
user parameter and user problem structure to store the relevant values.

3. Now edit the file Template/Master/master user.c. If you choose to have all variables in the
base set (a good starting point), the only function that really needs to be filled out initially
is user io(), where you can read in the instance data. Note that the name of the file to read
the instance data from can be specified on the command line using the ”-F” switch. Also,
check out the function user set base().

4. Edit the file Template/LP/lp user.c. The function user create lp() must be filled out.
This is the most important function, as it sets up the initial LP relaxation in each search
node.

Now compile by by typing “make” (assuming that the make file has already been modified
appropriately). That’s it! You should now have a working branch and bound solver. Next you can
work on filling in more advanced functions and adding cutting planes.

8.3.2 Microsoft Windows

Developing a simple branch and bound solver can be done quite quickly using the template provided
in the SYMPHONY\Template\ directory. The simplest approach is to develop a sequential application,
sharing a single user data structure among all the modules. Using this approach, an application
can be developed by filling in only a few simple functions. Here are four simple steps to get up and
running.

1. First open the workspace SYMPHONY-3.0.1\WIN32\template.dsw and modify for your local
setup, as described in Section 8.2. Note that you will also have to delete the file vrp.lib

25

from the symphony project and add template.lib. It should build right away, although it
won’t run until modified as described below.

2. First, decide what run-time parameters you might need and what data has to be stored
to describe your instance. Edit the file Template\include\user.h, adding the appropriate
fields to the user parameter and user problem structure to store the relevant values.

3. Now edit the file Template\Master\master user.c. If you choose to have all variables in the
base set (a good starting point), the only function that really needs to be filled out initially
is user io(), where you can read in the instance data. Note that the name of the file to read
the instance data from can be specified on the command line using the ”-F” switch. Also,
check out the function user set base().

4. Edit the file Template\LP\lp user.c. The function user create lp() must be filled out.
This is the most important function, as it sets up the initial LP relaxation in each search
node.

Now build again and you have a working branch and bound solver! Next you can work on
filling in more advanced functions and adding cutting planes. See the documentation for more
information on this.

9 Advanced Development

9.1 Orienting Yourself

The easiest way to get oriented is to examine the organization of the source files (note that file
names will be given Unix-style). When you unpack the SYMPHONY distribution, you will notice
that the source files are organized along the lines of the modules. There is a separate directory
for each module—master (Master), tree manager (TreeManager), cut generator (CutGen), cut pool
(CutPool), and LP solver (LP). In addition, there is a directory called DrawGraph and a directory
called Common that also contain source files. The DrawGraph directory provides an interface from
SYMPHONY to the Interactive Graph Drawing software package developed by Marta Esö. This
is an excellent utility for graphical display and debugging. The Common directory contains source
code for functions used by multiple modules.

Within each module’s directory, there is a primary source file containing the function main()
(named *.c where * is the module name), a source file containing functions related to inter-
process communication (named * proccomm.c) and a file containing general subroutines used by
the module (named * func.c). The master is the exception and is organized slightly differently.
The LP process source code is further subdivided due to the sheer number of functions.

The include directory contains the header files. Corresponding to each module, there are three
header files, one containing internal data structures and function prototypes associated with the
module (named *.h where * is the module name), one containing the data structures for storing
the parameters (these are also used by the master process), and the third containing the function
prototypes for the user functions (name * u.h). By looking at the header files, you should get a
general idea of how things are laid out.

In addition to the subdirectories corresponding to each module, there are subdirectories cor-
responding to applications. The sample application is contained in the directory Vrp/. The
files containing function stubs that can be filled in to create a new application are contained

26 9 ADVANCED DEVELOPMENT

in the directory SYMPHONY-3.0.1/Template/. There is one file for each module, initially called
Template/*/* user.c. The primary thing that you, as the user, need to understand to build an
application is how to fill in these stubs. That is what the second section of this manual is about.

9.2 Writing the User Functions

The majority of the user functions are called from either the master process or the LP process.
For these two modules, user functions are invoked from so-called wrapper functions that provide
the interface. Each wrapper function is named * u() , where * is the name of the corresponding
user function, and is defined in a file called * wrapper.c. The wrapper function first collects the
necessary data and hands it to the user by calling the user function. Based on the return value
from the user, the wrapper then performs any necessary post-processing. Most user functions are
designed so that the user can do as little or as much as she likes. Where it is feasible, there are
default options that allow the user to do nothing if the default behavior is acceptable. This is not
possible in all cases and the user must provide certain functions, such as separation.

In the next section, the user functions are described in detail. The name of every user written
function starts with user . There are three kinds of arguments:

IN: An argument containing information that the user might need to perform the function.

OUT: A pointer to an argument in which the user should return a result (requested data, decision,
etc.) of the function.

INOUT: An argument which contains information the user might need, but also for which the user
can change the value.

The return values from each function are as follows:

Return values:
ERROR Error in the user function. Printing an error message is the user’s

responsibility. Depending on the work the user function was sup-
posed to do, the error might be ignored (and some default option
used), or the process aborts.

USER AND PP The user implemented both the user function and post-processing
(post-processing by SYMPHONY will be skipped).

USER NO PP The user implemented the user function only.
DEFAULT The default option is going to be used (the default is one of the

built-in options, SYMPHONY decides which one to use based
on initial parameter settings and the execution of the algorithm).

built in option1
built in option2 ... The specified built-in option will be used.

Notes: • Sometimes an output is optional. This is always be noted in the function descriptions.

• If an array has to be returned (i.e., the argument is type **array) then (unless otherwise
noted) the user has to allocate space for the array itself and set *array to be the array
allocated. If an output array is optional then the user must not set *array for the array
she is not going to fill up because this is how SYMPHONY decides which optional
arrays are filled up.

9.3 Data Structures 27

• Some built-in options are implemented so that the user can invoke them directly from the
user function. This might be useful if, for example, the user wants to use different built-
in options at different stages of the algorithm, or if he wants to do the post-processing
himself but does not want to implement the option itself.

9.3 Data Structures

9.3.1 Internal Data Structures

With few exceptions, the data structures used internally by SYMPHONY are undocumented and
most users will not need to access them directly. However, if such access is desired, a pointer
to the main data structure used by each of the modules can be obtained simply by calling the
function get * ptr() where * is the appropriate module (see the header files). This function will
return a pointer to the data structure for the appropriate module. Casual users are advised against
modifying SYMPHONY’s internal data structures directly.

9.3.2 User-defined Data Structures

The user can define her own data structure for each module to maintain problem-specific data and
any other information the user needs access to. A pointer to this data structure is maintained by
SYMPHONY and is passed to the user as an argument to each user function. Since SYMPHONY
knows nothing about this data structure, it is up to the user to allocate it, maintain it, and free it
as required.

9.4 Inter-process Communication for Distributed Computing

While the implementation of SYMPHONY strives to shield the user from having to know any-
thing about communications protocols or the specifics of inter-process communication, it may be
necessary for the user to pass information from one module to another in some cases—for instance,
if the user must pass problem-specific data to the LP process after reading them in from a data
file. In cases where this might be appropriate, user functions are supplied in pairs—a send func-
tion and a receive function. All data are sent in the form of arrays of either type char, int, or
double, or as strings. To send an array, the user has simply to invoke the function send ? array(?
*array, int length) where ? is one of the previously listed types. To receive that array, there
is a corresponding function called receive ? array(? *array, int length). When receiving
an array, the user must first allocate the appropriate amount of memory. In cases where variable
length arrays need to be passed, the user must first pass the length of the array (as a separate
array of length one) and then the array itself. In the receive function, this allows the length to be
received first so that the proper amount of space can be allocated before receiving the array itself.
Note that data must be received in exactly the same order as it was passed, as data is read linearly
into and out of the message buffer. The easiest way to ensure this is done properly is to simply
copy the send statements into the receive function and change the function names. It may then be
necessary to add some allocation statements in between the receive function calls.

9.5 The LP Engine

SYMPHONY requires the use of a third-party callable library to solve the LP relaxations once
they are formulated. Currently, ILOG’s CPLEX c© and IBM’s OSL are the available options. Be

28 9 ADVANCED DEVELOPMENT

forewarned that OSL’s interface is not tested and has exhibited suboptimal performance. Any LP
solver with the appropriate capabilities can be interfaced with SYMPHONY by writing a set of
interface routines contained in the file LP/lp solver.c. Once the interface routines are written,
the make file must be modified to link with the new LP solver.

9.6 Compiling Your Application

9.6.1 Unix Operating Systems

Once the user functions are filled in, all that remains is to compile the application. The distribu-
tion comes with two make files that facilitate this process. The primary make file resides in the
SYMPHONY-3.0.1/ directory. The user make file resides in the user’s subdirectory, initially called
SYMPHONY-3.0.1/Template/. There are a number of variables that must be set in the primary
make file. First ensure that the sample application compiles by following the instructions in Sec-
tion ??. Then modify the makefile to reflect the new $(USERROOT) (SYMPHONY-3.0.1/Template
by default). When you are ready, type “make” to make the executables. SYMPHONY will create
three new subdirectories—SYMPHONY-3.0.1/Template/obj.*, SYMPHONY-3.0.1/Template/bin.*,
and SYMPHONY-3.0.1/Template/dep.* where * is a the current architecture (defined in the make
file).

Working with PVM. To compile a distributed application, it is necessary to install PVM. The
current version of PVM can be obtained at http://www.csm.ornl.gov/pvm/. It should compile
and install without any problem. You will have to make a few modifications to your .cshrc
file, such as defining the PVM ROOT environment variable, but this is all explained clearly in the
PVM documentation. Note that all executables (or at least a link to them) must reside in the
$PVM ROOT/bin/$PVM ARCH directory in order for parallel processes to be spawned correctly. The
environment variable PVM ARCH is set in your .cshrc file and contains a string representing the
current architecture type. To run a parallel application, you must first start up the daemon on
each of the machines you plan to use in the computation. How to do this is also explained in the
PVM documentation.

Communication with Shared Memory. In the shared memory configuration, it is not nec-
essary to use message passing to move information from one module to another since memory is
globally accessible. In the few cases where the user would ordinarily have to pass information using
message passing, it is easiest and most efficient to simply copy the information to the new loca-
tion. This copying gets done in the send function and hence the receive function is never actually
called. This means that the user must perform all necessary initialization, etc. in the send func-
tion. This makes it a little confusing to write source code which will work for all configurations.
However, the confusion should be cleared up by looking at the sample application, especially the
file SYMPHONY-3.0.1/Vrp/Master/vrp.c.

Configuring the Modules. In the make file, there are four variables that control which modules
run as separate executables and which are called directly in serial fashion. The variables are as
follows:

COMPILE IN CG: If set to TRUE, then the cut generator function will be called directly from
the LP in serial fashion, instead of running as a separate executable. This is desirable if cut

9.7 Debugging Your Application 29

generation is quick and running it in parallel is not worth the price of the communication
overhead.

COMPILE IN CP: If set to TRUE, then the cut pool(s) will be maintained as a data structure
auxiliary to the tree manager.

COMPILE IN LP: If set to TRUE, then the LP functions will be called directly from the tree
manager. When running the distributed version, this necessarily implies that there will only
be one active subproblem at a time, and hence the code will essentially be running serially. IN
the shared-memory version, however, the tree manager will be threaded in order to execute
subproblems in parallel.

COMPILE IN TM: If set to TRUE, then the tree will be managed directly from the master
process. This is only recommended if a single executable is desired (i.e. the three other
variables are also set to true). A single executable is extremely useful for debugging purposes.

These variables can be set in virtually any combination, though some don’t really make much sense.
Note that in a few user functions that involve process communication, there will be different versions
for serial and parallel computation. This is accomplished through the use of #ifdef statements in
the source code. This is well documented in the function descriptions and the in the source files
containing the function stubs. See also Section 9.6.1.

Executable Names. In order to keep track of the various possible configurations, executable and
their corresponding libraries are named as follows. For the fully distributed version, the names are
master, tm, lp, cg, and cp. For other configurations, the executable name is a combination of all
the modules that were compiled together joined by underscores. In other words, if the LP and the
cut generator modules were compiled together (i.e. COMPILE IN CG set to TRUE), then the executable
name would be “lp cg” and the corresponding library file would be called “liblp cg.a.” You can
rename the executables as you like. However, if you are using PVM to spawn the modules, as in
the fully distributed version, you must set the parameters * exe in the parameter file to the new
executable names. See Section 11.4 for information on setting parameters in the parameter file.

9.6.2 Microsoft Windows

First, follow the instructions for compiling the sample application in Section ?? to ensure you have
the proper settings. Once the stub files in the SYMPHONY-3.0.1\Template hierarchy are filled in,
use the project “vrp” as a template to create a new project called “user” that compiles the files in
SYMPHONY-3.0.1\Template and creates a library. Modify the project “symphony” to compile and
link with the new user library.

9.7 Debugging Your Application

Much of this section applies to Unix operating systems. However, it may also be useful for Windows
users.

9.7.1 The First Rule

SYMPHONY has many built-in options to make debugging easier. The most important one,
however, is the following rule. It is easier to debug the fully sequential version than the

30 9 ADVANCED DEVELOPMENT

fully distributed version. Debugging parallel code is not terrible, but it is more difficult to
understand what is going on when you have to look at the interaction of several different modules
running as separate processes. This means multiple debugging windows which have to be closed and
restarted each time the application is re-run. For this reason, it is highly recommended to develop
code that can be compiled serially even if you eventually intend to run in a fully distributed
environment. This does make the coding marginally more complex, but believe me, it’s worth the
effort. The vast majority of your code will be the same for either case. Make sure to set the compile
flag to “-g” in the make file.

9.7.2 Debugging with PVM

If you wish to venture into debugging your distributed application, then you simply need to set
the parameter * debug, where * is the name of the module you wish to debug, to the value “4” in
the parameter file (the number “4” is chosen by PVM). This will tell PVM to spawn the particular
process or processes in question under a debugger. What PVM actually does in this case is to
launch the script $PVM ROOT/lib/debugger. You will undoubtedly want to modify this script to
launch your preferred debugger in the manner you deem fit. If you have trouble with this, please
send e-mail to the list serve (see Section 9.9).

It’s a little tricky to debug interacting parallel processes, but you will quickly get the idea. The
main difficulty is in that the order of operations is difficult to control. Random interactions can
occur when processes run in parallel due to varying system loads, process priorities, etc. Therefore,
it may not always be possible to duplicate errors. To force runs that you should be able to reproduce,
make sure the parameter no cut timeout appears in the parameter file or start SYMPHONY with
the “-a” option. This will keep the cut generator from timing out, a major source of randomness.
Furthermore, run with only one active node allowed at a time (set max active nodes to “1”).
This will keep the tree search from becoming random. These two steps should allow runs to be
reproduced. You still have to be careful, but this should make things easier.

9.7.3 Using Purify and Quantify

The make file is already set up for compiling applications using purify and quantify. Simply set
the paths to the executables and type “make pall” or “p*” where * is the module you want to
purify. The executable name is the same as described in Section 9.6.1, but with a “p” in front of it.
To tell PVM to launch the purified version of the executables, you must set the parameters * exe
in the parameter file to the purified executable names. See Section 11.4 for information on setting
parameters in the parameter file.

9.7.4 Checking the Validity of Cuts and Tracing the Optimal Path

Sometimes the only evidence of a bug is the fact that the optimal solution to a particular problem
is never found. This is usually caused by either (1) adding an invalid cut, or (2) performing
an invalid branching. There are two options available for discovering such errors. The first is
for checking the validity of added cuts. This checking must, of course, be done by the user,
but SYMPHONY can facilitate such checking. To do this, the user must fill in the function
user check validity of cut() (see Section 10.3). THIS function is called every time a cut is
passed from the cut generator to the LP and can function as an independent verifier. To do this,
the user must pass (through her own data structures) a known feasible solution. Then for each cut

9.7 Debugging Your Application 31

passed into the function, the user can check whether the cut is satisfied by the feasible solution.
If not, then there is a problem! Of course, the problem could also be with the checking routine.
To see how this is done, check out the sample application file Vrp/cg user.c. After filling in this
function, the user must recompile everything (including the libraries) after uncommenting the line
in the make file that contains “BB DEFINES += -DCHECK CUT VALIDITY.” Type “make clean all”
and then “make.”

Tracing the optimal path can alert the user when the subproblem which admits a particular
known feasible solution (at least according to the branching restrictions that have been imposed
so far) is pruned. This could be due to an invalid branching. Note that this option currently
only works for branching on binary variables. To use this facility, the user must fill in the function
user send feas sol() (see Section 10.1). All that is required is to pass out an array of user indices
that are in the feasible solution that you want to trace. Each time the subproblem which admits
this feasible solution is branched on, the branch that continues to admit the solution is marked.
When one of these marked subproblems is pruned, the user is notified.

9.7.5 Using the Interactive Graph Drawing Software

The Interactive Graph Drawing (IGD) software package is included with SYMPHONY and SYM-
PHONY facilitates its use through interfaces with the package. The package, which is a Tcl/Tk
application, is extremely useful for developing and debugging applications involving graph-based
problems. Given display coordinates for each node in the graph, IGD can display support graphs
corresponding to fractional solutions with or without edge weights and node labels and weights,
as well as other information. Furthermore, the user can interactively modify the graph by, for
instance, moving the nodes apart to “disentangle” the edges. The user can also interactively enter
violated cuts through the IGD interface.

To use IGD, you must have installed PVM since the drawing window runs as a separate appli-
cation and communicates with the user’s routines through message passing. To compile the graph
drawing application, type “make dg” in the SYMPHONY root directory. The user routines in the
file dg user.c can be filled in, but it is not necessary to fill anything in for basic applications.

After compiling dg, the user must write some subroutines that communicate with dg and cause
the graph to be drawn. Regrettably, this is currently a little more complicated than it needs to be
and is not well documented. However, by looking at the sample application, it should be possible
to see how it is done. To enable graph drawing, put the line do draw graph 1 into the parameter
file or use the -d command line option. It can be difficult to get IGD to work. If you are interested
in using it and cannot get it to work, feel free to contact me.

9.7.6 Other Debugging Techniques

Another useful built-in function is MakeMPS, which will write the current LP relaxation to a file
in MPS format. This file can then be read into the LP solver interactively or examined by hand for
errors. Many times, CPLEX gives much more explicit error messages interactively than through
the callable library. The form of the function is

void MakeMPS(LPData *lp_data, int bc_index, int iter_num)

The matrix is written to the file “matrix.[bc index].[iter num].mps” where bc index is the usu-
ally passed as the index of the current subproblem and iter num is the current iteration number.
These can, however, be any numbers the user chooses. If SYMPHONY is forced to abandon

32 9 ADVANCED DEVELOPMENT

solution of an LP because the LP solver returns an error code, the current LP relaxation is au-
tomatically written to the file “matrix.[bc index].[iter num].mps” where bc index is the index
of the current subproblem and iter num is the current iteration number. MakeMPS can be called
using breakpoint code to examine the status of the matrix at any point during execution.

Logging is another useful feature. Logging the state of the search tree can help isolate some
problems more easily. See Section 11.4 for the appropriate parameter settings to use logging.

9.8 Controlling Execution and Output

Calling SYMPHONY with no arguments simply lists all command-line options. Most of the
common parameters can be set on the command line. Usually it is easier to use a parameter file.
To invoke SYMPHONY with a parameter file type “master -f filename ...” where filename
is the name of the parameter file. The format of the file is explained in Section 11.

The output level can be controlled through the use of the verbosity parameter. Setting this
parameter at different levels will cause different progress messages to be printed out. Level 0 only
prints out the introductory and solution summary messages, along with status messages every
10 minutes. Level 1 prints out a message every time a new node is created. Level 3 prints out
messages describing each iteration of the solution process. Levels beyond 3 print out even more
detailed information.

There are also two possible graphical interfaces. For graph-based problems, the Interactive
Graph Drawing Software allows visual display of fractional solutions, as well as feasible and optimal
solutions discovered during the solution process. For all types of problems, VBCTOOL creates a
visual picture of the branch and cut tree, either in real time as the solution process evolves or as
an emulation from a file created by SYMPHONY. See Section 11.4 for information on how to use
VBCTOOL with SYMPHONY. Binaries for VBCTOOL can be obtained at
http://www.informatik.uni-koeln.de/ls juenger/projects/vbctool.html.

9.9 Other Resources

There is a SYMPHONY user’s list serve for posting questions/comments. To subscribe, send
“subscribe symphony-users” to majordomo@branchandcut.org. There is also a Web site for
SYMPHONY at http://branchandcut.org/SYMPHONY . Bug reports can be sent to
symphony-bugs@branchandcut.org.

33

10 The User API Specification

10.1 User-written functions of the Master process

. user usage

void user_usage()

Description:
The user can use any capitol letter (except ’H’) for command line switches to con-
trol user-defined parameter settings without the use of a parameter file. The function
user usage() can optionally print out usage information for the user-defined command
line switches. The command line switch -H automatically calls the user’s usage subrou-
tine. The switch -h prints SYMPHONY’s own usage information.

. user initialize

int user_initialize(void **user)

Description:
The user allocates space for and initializes the user-defined data structures for the master
process.

Arguments:
void **user OUT Pointer to the user-defined data structure.

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP Initialization is done.

. user free master

int user_free_master(void **user)

Description:
The user frees all the data structures within *user, and also free *user itself. This
can be done using the built-in macro FREE that checks the existence of a pointer before
freeing it.

Arguments:
void **user INOUT Pointer to the user-defined data structure (should be NULL

on return).
Return values:

ERROR Ignored. This is probably not a fatal error.
USER NO PP Everything was freed successfully.

. user readparams

34 10 THE USER API SPECIFICATION

int user_readparams(void *user, char *filename, int argc, char **argv)

Description:
The user reads in parameters from the file named filename. The file filename is a file
containing both built-in parameters and user parameters. The filename is given as a
command line argument when starting the application and is then passed to the user.
The user must open the file for reading, scan the file for lines that contain user parameters
and then read the parameters in as appropriate. See the file Master/master io.c to see
how SYMPHONY does this.
Optionally, the user can also parse the command line arguments. All capital letters are
reserved for user-defined command line switches. The switch -H is reserved for help and
calls the user’s usage subroutine (see user send lp data()).

Arguments:
void *user IN Pointer to the user-defined data structure.
char *filename IN The name of the parameter file.

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP User parameters were read successfully.

. user io

int user_io(void *user)

Description:
The user prepares all information needed to specify the problem instance (e.g., reads in
data from a data file, etc.).

Arguments:
void *user IN Pointer to the user-defined data structure.

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP User I/O was completed successfully.

. user init draw graph

int user_init_draw_graph(void *user, int dg_id)

Description:
This function is invoked only if the do draw graph parameter is set. The user can
initialize the graph drawing process by sending some initial information (e.g., the location
of the nodes of a graph, like in the TSP.)

Arguments:
void *user IN Pointer to the user-defined data structure.
int dg id IN The process id of the graph drawing process.

10.1 User-written functions of the Master process 35

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP The user completed initialization successfully.

. user start heurs

int user_start_heurs(void *user, double *ub, double *ub_estimate)

Description:

The user invokes heuristics and generates the initial global upper bound and also perhaps
an upper bound estimate. This is the last place where the user can do things before
the branch and cut algorithm starts. She might do some preprocessing, in addition to
generating the upper bound.

Arguments:

void *user IN Pointer to the user-defined data structure.
double *ub OUT Pointer to the global upper bound. Initially, the upper bound

is set to either -MAXDOUBLE or the bound read in from the pa-
rameter file, and should be changed by the user only if a better
valid upper bound is found.

double *ub estimate OUT Pointer to an estimate of the global upper bound. This is useful
if the BEST ESTIMATE diving strategy is used (see the treeman-
ager parameter diving strategy (Section 11.4))

Return values:
ERROR Error. This error is probably not fatal.
USER NO PP User executed function successfully.

. user set base

int user_set_base(void *user, int *basevarnum, int **basevars, double **lb,
double **ub, int *basecutnum, int *colgen_strat)

Description:

The user must specify the set of base variables and the number of base constraints. The
base constraints themselves need not be specified since they are never stored explicitly.

Arguments:

36 10 THE USER API SPECIFICATION

void *user IN Pointer to the user-defined data structure.
int *varnum OUT Pointer to the number of base variables.
int **userind OUT Pointer to an array containing the user indices of

the base variables.
int **lb OUT Pointer to an array containing the lower bounds for

the base variables.
int **ub OUT Pointer to an array containing the upper bounds for

the base variables.
int *cutnum OUT The number of base constraints.
int *colgen strat INOUT The default strategy or one that has been read in

from the parameter file is passed in, but the user is
free to change it. See colgen strat in the descrip-
tion of parameters for details on how to set it.

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP The required data are filled in, but no post-processing done.
USER AND PP All required post-processing done.

Post-processing:
The array of user indices is sorted if the user has not already done so.

. user create root

int user_create_root(void *user, int *extravarnum, int **extravars)

Description:
The user must specify which extra variables are to be active in the root node in addition
to the base variables.

Arguments:
void *user IN Pointer to the user-defined data structure.
int *extravarnum OUT Pointer to the number of extra active variables in the

root.
int *extravars OUT Pointer to an array containing a list of user indices of

the extra variables to be active in the root.
Return values:

ERROR Error. SYMPHONY stops.
USER NO PP All required data filled out, but no post-processing done.
USER AND PP All required post-processing done.

Post-processing:
The array of extra indices is sorted if the user has not already done so.

. user receive feasible solution

int user_receive_feasible_solution(void *user, int msgtag, double cost,
int numvars, int *indices, double *values)

10.1 User-written functions of the Master process 37

Description:
Feasible solutions can be sent and/or stored in a user-defined packed form if desired. For
instance, the TSP, a tour can be specified simply as a permutation, rather than as a list
of variable indices. In the LP process, a feasible solution is packed either by the user or
by a default packing routine. If the default packing routine was used, the msgtag will be
FEASIBLE SOLUTION NONZEROS. In this case, cost, numvars, indices and values will
contain the solution value, the number of nonzeros in the feasible solution, and their
user indices and values. The user has only to interpret and store the solution. Oth-
erwise, when msgtag is FEASIBLE SOLUTION USER, SYMPHONY will send and receive
the solution value only and the user has to unpack exactly what she has packed in the
LP process. In this case the contents of the last three arguments are undefined.

Arguments:
void *user IN Pointer to the user-defined data structure.
int msgtag IN FEASIBLE SOLUTION NONZEROS or FEASIBLE SOLUTION USER
double cost IN The cost of the feasible solution.
int numvars IN The number of variables whose user indices and values were

sent (length of indices and values).
int *indices IN The user indices of the nonzero variables.
double *values IN The corresponding values.

Return values:
ERROR Ignored. This is probably not a fatal error.
USER NO PP The solution has been unpacked and stored.

. user send lp data

int user_send_lp_data(void *user, void **user_lp)

Description:
The user has to send all problem-specific data that will be needed in the LP process
to set up the initial LP relaxation and perform later computations. This could include
instance data, as well as user parameter settings. This is one of the few places where the
user will need to worry about the configuration of the modules. If either the tree manager
or the LP are running as a separate process (either COMPILE IN LP or COMPILE IN TM
are FALSE in the make file), then the data will be sent and received through message-
passing. See user receive lp data() in Section 10.2 for more discussion. Otherwise,
it can be copied over directly to the user-defined data structure for the LP. In the latter
case, *user lp is a pointer to the user-defined data structure for the LP that must
be allocated and initialized. For a discussion of message-passing in SYMPHONY, see
Section 9.4. The code for the two cases is put in the same source file by use of #ifdef
statements. See the comments in the code stub for this function for more details.

Arguments:
void *user IN Pointer to the user-defined data structure.
void **user lp OUT Pointer to the user-defined data structure for the LP pro-

cess.

38 10 THE USER API SPECIFICATION

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP Packing is done.

. user send cg data

int user_pack_cg_data(void *user, void **user_cg)

Description:
The user has to send all problem-specific data that will be needed by the cut generator
for separation. This is one of the few places where the user will need to worry about the
configuration of the modules. If either the tree manager, the LP, or the cut generator are
running as a separate process (either COMPILE IN LP, COMPILE IN TM, or COMPILE IN CG
are FALSE in the make file), then the data will be sent and received through message-
passing. See user receive cg data in Section 10.3 for more discussion. Otherwise, it
can be copied over directly to the user-defined data structure for the CG. In the latter
case, *user cg is a pointer to the user-defined data structure for the CG that must
be allocated and initialized. For a discussion of message-passing in SYMPHONY, see
Section 9.4. The code for the two cases is put in the same source file by use of #ifdef
statements. See the comments in the code stub for this function for more details.

Arguments:
void *user IN Pointer to the user-defined data structure.
void **user cg OUT Pointer to the user-defined data structure for the cut gen-

erator process.
Return values:

ERROR Error. SYMPHONY stops.
USER NO PP Packing is done.

. user send cp data

int user_pack_cp_data(void *user, void **user_cp)

Description:
The user has to send all problem-specific data that will be needed by the cut pool in
order to store and check cuts. This is one of the few places where the user will need to
worry about the configuration of the modules. If either the tree manager, the LP, or
the cut pool are running as a separate process(either COMPILE IN LP, COMPILE IN TM,
or COMPILE IN CP are FALSE in the make file), then the data will be sent and received
through message-passing. See user receive cp data() in Section 10.4 for more discus-
sion. Otherwise, it can be copied over directly to the user-defined data structure for
the CP. In the latter case, *user cp is a pointer to the user-defined data structure for
the CP that must be allocated and initialized. For a discussion of message passing in
SYMPHONY, see Section 9.4. The code for the two cases is put in the same source file
by use of #ifdef statements. See the comments in the code stub for this function for
more details.

10.1 User-written functions of the Master process 39

Arguments:
void *user IN Pointer to the user-defined data structure.
void **user cp OUT Pointer to the user-defined data structure for the cut pool

process.

Return values:
ERROR Error. SYMPHONY stops.
USER NO PP Packing is done.

. user display solution

int user_display_solution(void *user)

Description:
This function is invoked when the best solution found so far is to be displayed (after
heuristics, after the end of the first phase, or the end of the whole algorithm). This can
be done using either a text-based format or using the drawgraph process.

Return values:
ERROR Ignored.
USER NO PP Displaying is done.

Arguments:
void *user IN Pointer to the user-defined data structure.

. user send feas sol

int user_process_own_messages(void *user, int *feas_sol_size, int **feas_sol)

Description:
This function is useful for debugging purposes. It passes a known feasible solution to
the tree manager. The tree manager then tracks which current subproblem admits this
feasible solution and notifies the user when it gets pruned. It is useful for finding out
why a known optimal solution never gets discovered. Usually, this is due to either an
invalid cut of an invalid branching. Note that this feature only works when branching
on binary variables. See Section 9.7.4 for more on how to use this feature.

Return values:

Arguments:
void *user IN Pointer to the user-defined data structure.
int *feas sol size INOUT Pointer to size of the feasible solution passed by the

user.
int **feas sol INOUT Pointer to the array of user indices containing the

feasible solution. This array is simply copied by the
tree manager and must be freed by the user.

ERROR Solution tracing is not enabled.
USER NO PP Tracing of the given solution is enabled.

40 10 THE USER API SPECIFICATION

. user process own messages

int user_process_own_messages(void *user, int msgtag)

Description:
The user must receive any message he sends to the master process (independently of
SYMPHONY’s own messages). An example for such a message is sending feasible
solutions from separate heuristics processes fired up in user start heurs().

Arguments:
void *user IN Pointer to the user-defined data structure.
int msgtag IN The message tag of the message.

Return values:
ERROR Ignored.
USER NO PP Message is processed.

10.2 User-written functions of the LP process 41

10.2 User-written functions of the LP process

Data Structures

We first describe a few structures that are used to pass data into and out of the user func-
tions of the LP process.

. cut data
One of the few internally defined data structures that the user has to deal with frequently
is the cut data data structure, used to store the packed form of cuts. This structure has 8
fields listed below.

int size – The size of the coef array.

char *coef – An array containing the packed form of the cut, which is defined and con-
structed by the user. Given this packed form and a list of the variables active in the
current relaxation, the user must be able to construct the corresponding constraint.

double rhs – The right hand side of the constraint.

double range – The range of the constraint. It is zero for a standard form constraint.
Otherwise, the row activity level is limited to between rhs and rhs + range.

char type – A user-defined type identifier that represents the general class that the cut
belongs to.

char sense – The sense of the constraint. Can be either ’L’ (≤), ’E’ (=), ’G’ (≥) or ’R’
(ranged). This may be evident from the type.

char deletable – Determines whether or not a cut can be deleted once added to the for-
mulation. TRUE by default.

char branch – Determines whether the cut can be branched on or not. Possible initial values
are DO NOT BRANCH ON THIS ROW and ALLOWED TO BRANCH ON.

int name – Identifier used by SYMPHONY. The user should not set this.

. waiting row
A closely related data structure is the waiting row, essentially the “unpacked” form of a cut.
There are six fields.

source pid – Used internally by SYMPHONY.

cut data *cut – Pointer to the cut from which the row was generated.

int nzcnt, *matind, *matval – Fields describing the row. nzcnt is the number of nonze-
ros in the row, i.e., the length of the matind and matval arrays, which are the variable
indices (wrt. the current LP relaxation) and nonzero coefficients in the row.

double violation – If the constraint corresponding to the cut is violated, this value contains
the degree of violation (the absolute value of the difference between the row activity level
(i.e., lhs) and the right hand side). This value does not have to be set by the user.

. var desc
The var desc structure is used list the variables in the current relaxation. There are four
fields.

42 10 THE USER API SPECIFICATION

int userind – The user index of the variables,

int colind – The column index of the variables (in the current relaxation),

double lb – The lower bound of the variable,

double ub – The upper bound of the variable.

Function Descriptions

Now we describe the functions themselves.

. user receive lp data

int user_receive_lp_data (void **user)

Description:
The user has to receive here all problem-specific information sent from the master, set
up necessary data structures, etc. Note that the data need only be actively received
and the user data structure allocated if either the TM or LP modules are configured
as separate processes. Otherwise, data will have been copied into appropriate locations
in the master function user send lp data() (see Section 10.1). The two cases can be
handled by means of #ifdef statements. See comments in the source code stubs for
more details. Note that the data must be received in exactly the same order as it was
sent from the master. See Section 9.4 for more notes on receiving data.

Arguments:
void **user OUT Pointer to the user-defined LP data structure.

Return values:
ERROR Error. SYMPHONY aborts this LP process.
USER NO PP User received the data.

Wrapper invoked from: lp initialize() at process start.

. user free lp

int user_free_lp(void **user)

Description:
The user has to free all the data structures within *user, and also free user itself. The
user can use the built-in macro FREE that checks the existence of a pointer before freeing
it.

Arguments:
void **user INOUT Pointer to the user-defined LP data structure.

Return values:
ERROR Error. SYMPHONY ignores error message.
USER NO PP User freed everything in the user space.

Wrapper invoked from: lp close() at process shutdown.

10.2 User-written functions of the LP process 43

. user create lp

int user_create_lp(void *user, int varnum, var_desc **vars, int
numrows, int cutnum, cut_data **cuts, int *nz,
int **matbeg, int **matind, double **matval,
double **obj, double **rhs, char **sense,
double **rngval, int *maxn, int *maxm,
int *maxnz, int *allocn, int *allocm, int *allocnz)

Description:
Based on the instance data contained in the user data structure and the list of cuts and
variables that are active in the current subproblem, the user has to create the initial LP
relaxation for the search node. The matrix of the LP problem must contain the variables
whose user indices are listed in vars (in the same order) and at least the base constraints.

An LP is defined by a matrix of constraints, an objective function, and bounds
on both the right hand side values of the constraints and on the variables. If the
problem has n variables and m constraints, the constraints are given by a constraint
coefficient matrix of size mxn (described in the next paragraph). The sense of each
constraint, the right hand side values and bounds on the right hand side (called range)
are vectors are of size m. The objective function coefficients and the lower and upper
bounds on the variables are vectors of length n. The sense of each constraint can be
either ’L’ (≤), ’E’ (=), ’G’ (≥) or ’R’ (ranged). For non-ranged rows the range value
is 0, for a ranged row the range value must be non-negative and the constraint means
that the row activity level has to be between the right hand side value and the right
hand side increased by the range value.

Since the coefficient matrix is very often sparse, only the nonzero entries are
stored. Each entry of the matrix has a column index, a row index and a coefficient
value associated with it. An LP matrix is specified in the form of the three arrays
*matval, *matind, and *matbeg. The array *matval contains the values of the nonzero
entries of the matrix in column order; that is, all the entries for the 0th column come
first, then the entries for the 1st column, etc. The row index corresponding to each
entry of *matval is listed in *matind (both of them are of length nz, the number of
nonzero entries in the matrix). Finally, *matbeg contains the starting positions of
each of the columns in *matval and *matind. Thus, (*matbeg)[i] is the position of
the first entry of column i in both *matval and *matind). By convention *matbeg is
allocated to be of length n + 1, with (*matbeg)[n] containing the position after the
very last entry in *matval and *matind (so it is very conveniently equal to nz). This
representation of a matrix is known as a column ordered or column major representation.

The arrays that are passed in can be overwritten and have already been previ-
ously allocated for the lengths indicated (see the description of arguments below).
Therefore, if they are big enough, the user need not reallocate them. If the max lengths
are not big enough then she has to free the corresponding arrays and allocate them
again. In this case she must return the allocated size of the array to avoid further

44 10 THE USER API SPECIFICATION

reallocation. If the user plans to utilize dynamic column and/or cut generation, arrays
should be allocated large enough to allow for reasonable growth of the matrix or
unnecessary reallocations will result. In order to accommodate *maxn variables, arrays
must be allocated to size *allocn = *maxn + *maxm +1 and *allocnz = *maxnz +
*maxm because of the extra space required by the LP solver for slack and artificial
variables.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int varnum IN Number of variables in the relaxation (base and extra).
var desc **vars IN An array of length n containing the user indices of the

active variables (base and extra).
int rownum IN Number of constraints in the relaxation (base and ex-

tra).
int cutnum IN Number of extra constraints.
cut data **cuts IN Packed description of extra constraints.

int *nz OUT Pointer to the number of nonzeros in the LP.
int **matbeg INOUT Pointers to the arrays that describe the LP problem

(see description above.
int **matind INOUT
double **matval INOUT
double **obj INOUT
double **rhs INOUT
char **sense INOUT
double **rngval INOUT

int *maxn INOUT The maximum number of variables.
int *maxm INOUT The maximum number of constraints.
int *maxnz INOUT The maximum number of nonzeros.

int *allocn INOUT The length of the *matbeg and *obj arrays (should be
*maxm + *maxn +1).

int *allocm INOUT The length of the *rhs, *sense and *rngval arrays.
int *allocnz INOUT The length of the *matval and *matind arrays (should

be *maxnz + *maxm.
Return values:

ERROR Error. The LP process is aborted.
USER AND PP Post-processing will be skipped, the user added the constraints corre-

sponding to the cuts.
USER NO PP User created the matrix with only the base constraints.

Post-processing:
The extra constraints are added to the matrix by calling the user unpack cuts() sub-
routine and then adding the corresponding rows to the matrix. This is easier for the
user to implement, but less efficient than adding the cuts at the time the original matrix
was being constructed.

10.2 User-written functions of the LP process 45

Wrapper invoked from: process chain() which is invoked when setting up a the initial
search node in a chain.

. user get upper bounds

int user_get_upper_bounds(void *user, int varnum, int *indices, double *ub)

Description:

The user has to return the upper bounds of the variables whose user indices are given.
Note that space for ub is already allocated when this function is invoked. There is no
post-processing. The default is to set all the upper bounds to 1.

Arguments:

void *user IN Pointer to the user-defined LP data structure.
int varnum IN Length of vars.
int *vars IN Array containing the user indices of the variables.
double *ub OUT Array of upper bounds (to be filled out by the user).

Return values:
ERROR Error. The LP process is aborted.
DEFAULT Upper bounds are set to one.
USER NO PP The user filled up the upper bound array.

Wrapper invoked from: add col set() (when SYMPHONY adds columns after pricing
out) and from create lp u() (when SYMPHONY has to get the bounds on the extra
variables in the new active node).

Note:

Only the upper bounds for extra variables are ever asked for since the array of bounds
for the base variables is always maintained. Lower bounds for the extra variables must
be zero and hence there is no corresponding function for lower bounds.

. user is feasible

int user_is_feasible(void *user, double lpetol, int varnum, int
*indices, double *values, int *feasible)

Description:

User tests the feasibility of the solution to the current LP relaxation.

There is no post-processing. Possible defaults are testing integrality (TEST INTEGRALITY)
and testing whether the solution is binary (TEST ZERO ONE).

Arguments:

46 10 THE USER API SPECIFICATION

void *user INOUT Pointer to the user-defined LP data structure.

double lpetol IN The ε tolerance of the LP solver.
int varnum IN The length of the indices and values arrays.
int *indices IN User indices of variables at nonzero level in the current

solution.
double *values IN Values of the variables listed in indices.

int *feasible OUT Feasibility status of the solution (NOT FEASIBLE, or
FEASIBLE).

Return values:
ERROR Error. Solution is considered to be not feasible.
USER NO PP User checked IP feasibility.
DEFAULT Regulated by the parameter is feasible default, but set to

TEST INTEGRALITY unless over-ridden by the user.
TEST INTEGRALITY Test integrality of the given solution.
TEST ZERO ONE Tests whether the solution is binary.

Wrapper invoked from: select branching object() after pre-solving the LP relaxation
of a child corresponding to a candidate and from fathom branch() after solving an LP
relaxation.

. user send feasible solution

int user_send_feasible_solution(void *user, double lpetol,
int varnum, int *indices, double *values)

Description:
Send a feasible solution to the master process. The solution is sent using the commu-
nication functions described in Section 9.4 in whatever logical format the user wants to
use. The default is to pack the user indices and values of variables at non-zero level.
If the user packs the solution herself then the same data must be packed here that will
be received in the user receive feasible solution() function in the master process.
See the description of that function for details. This function will only be called when
either the LP or tree manager are running as a separate executable. Otherwise, the
solution gets stored within the LP user data structure.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

double lpetol IN The ε tolerance of the LP solver.
int varnum IN The length of the indices and values arrays.
int *indices IN User indices of variables at nonzero level in the current solu-

tion.
double *values IN Values of the variables listed in indices.

Return values:

10.2 User-written functions of the LP process 47

ERROR Error. Do the default.
USER NO PP User packed the solution.
DEFAULT Regulated by the parameter pack feasible solution default,

but set to SEND NONZEROS unless over-ridden by the user.
SEND NONZEROS Pack the nonzero values and their indices.

Wrapper invoked: as soon as feasibility is detected anywhere.

. user display solution

int user_display_solution(void *user, int which_sol,
int varnum, int *indices, double *values)

Description:
Given a solution to an LP relaxation (the indices and values of the nonzero variables) the
user can (graphically) display it. The which sol argument shows what kind of solution is
passed to the function: DISP FEAS SOLUTION indicates a solution feasible to the original
IP problem, DISP RELAXED SOLUTION indicates the solution to any LP relaxation and
DISP FINAL RELAXED SOLUTION indicates the solution to an LP relaxation when no cut
has been found. There is no post-processing. Default options print out user indices and
values of nonzero or fractional variables on the standard output.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int which sol IN The type of solution passed on to the
displaying function. Possible values are
DISP FEAS SOLUTION, DISP RELAXED SOLUTION and
DISP FINAL RELAXED SOLUTION.

int varnum IN The number of variables in the current solution at nonzero
level (the length of the indices and values arrays).

int *indices IN User indices of variables at nonzero level in the current solu-
tion.

double *values IN Values of the nonzero variables.

Return values:
ERROR Error. SYMPHONY ignores error message.
USER NO PP User displayed whatever she wanted to.
DEFAULT Regulated by the parameter display solution default.
DISP NOTHING Display nothing.
DISP NZ INT Display user indices (as integers) and values of nonzero variables.
DISP NZ HEXA Display user indices (as hexadecimals) and values of nonzero vari-

ables.
DISP FRAC INT Display user indices (as integers) and values of variables not at

their lower or upper bounds.
DISP FRAC HEXA Display user indices (as hexadecimals) and values of variables not

at their lower and upper bounds.

48 10 THE USER API SPECIFICATION

Wrapper invoked from: fathom branch() with DISP FEAS SOLUTION or
DISP RELAXED SOLUTION after solving an LP relaxation and checking its feasibil-
ity status. If it was not feasible and no cut could be added either then the wrapper is
invoked once more, now with DISP FINAL RELAXED SOLUTION.

. user shall we branch

int user_shall_we_branch(void *user, double lpetol, int cutnum,
int slacks_in_matrix_num,
cut_data **slacks_in_matrix,
int slack_cut_num, cut_data **slack_cuts,
int varnum, var_desc **vars, double *x,
char *status, int *cand_num,
branch_obj ***candidates, int *action)

Description:
There are two user-written functions invoked from select candidates u. The first
one (user shall we branch()) decides whether to branch at all, the second one
(user select candidates()) chooses the branching objects. The argument lists of the
two functions are the same, and if branching occurs (see discussion below) then the
contents of *cand num and *candidates will not change between the calls to the two
functions.

The first of these two functions is invoked in each iteration after solving the LP
relaxation and (possibly) generating cuts. Therefore, by the time it is called, some
violated cuts might be known. Still, the user might decide to branch anyway. The
second function is invoked only when branching is decided on.

Given (1) the number of known violated cuts that can be added to the problem
when this function is invoked, (2) the constraints that are slack in the LP relaxation,
(3) the slack cuts not in the matrix that could be branched on (more on this later), and
(4) the solution to the current LP relaxation, the user must decide whether to branch or
not. Branching can be done either on variables or slack cuts. A pool of slack cuts which
has been removed from the problem and kept for possible branching is passed to the
user. If any of these happen to actually be violated (it is up to the user to determine
this), they can be passed back as branching candidate type VIOLATED SLACK and will be
added into the current relaxation. In this case, branching does not have to occur (the
structure of the *candidates array is described below in user select candidates()).

This function has two outputs. The first output is *action which can take four
values: USER DO BRANCH if the user wants to branch, USER DO NOT BRANCH if he doesn’t
want to branch, USER BRANCH IF MUST if he wants to branch only if there are no known
violated cuts, or finally USER BRANCH IF TAILOFF if he wants to branch in case tailing
off is detected. The second output is the number of candidates and their description.
In this function the only sensible “candidates” are VIOLATED SLACKs.

10.2 User-written functions of the LP process 49

There is no post processing, but in case branching is selected, the
col gen before branch() function is invoked before the branching would take
place. If that function finds dual infeasible variables then (instead of branching) they
are added to the LP relaxation and the problem is resolved. (Note that the behavior of
the col gen before branch() is governed by the colgen strat[] TM parameters.)

Arguments:
void *user IN Pointer to the user-defined LP data struc-

ture.
double lpetol IN The ε tolerance of the LP solver.

int cutnum IN The number of violated cuts (known before
invoking this function) that could be added
to the problem (instead of branching).

int slacks in matrix num IN Number of slack constraints in the matrix.
cut data **slacks in matrix IN The description of the cuts corresponding

to these constraints (see Section 10.2).

int slack cut num IN The number of slack cuts not in the matrix.
cut data **slack cuts IN Array of pointers to these cuts (see Section

10.2).
int varnum IN The number of variables in the current lp

relaxation (the length of the following three
arrays).

var desc **vars IN Description of the variables in the relax-
ation.

double *x IN The corresponding solution values (in the
optimal solution to the relaxation).

char *status IN The stati of the variables. There are five
possible status values: NOT FIXED, TEMP -
FIXED TO UB, PERM FIXED TO UB, TEMP -
FIXED TO LB and PERM FIXED TO LB.

int *cand num OUT Pointer to the number of candidates re-
turned (the length of *candidates).

candidate ***candidates OUT Pointer to the array of candidates gener-
ated (see description below).

int *action OUT What to do. Must be one of the four above
described values.

Return values:
ERROR Error. DEFAULT is used.
USER NO PP The user filled out *action (and possibly *cand num and *candidates).
DEFAULT action is set to the value of the parameter shall we branch default,

which is initially USER BRANCH IF MUST unless over-ridden by the user.

Notes:

50 10 THE USER API SPECIFICATION

• The user has to allocate the pointer array for the candidates and place the pointer
for the array into ***candidates (if candidates are returned).

• Candidates of type VIOLATED SLACK are always added to the LP relaxation regardless
of what action is chosen and whether branching will be carried out or not.

• Also note that the user can change his mind in user select candidates() and
not branch after all, even if she chose to branch in this function. A possible
scenario: cut num is zero when this function is invoked and the user asks for
USER BRANCH IF MUST without checking the slack constraints and slack cuts. After-
wards no columns are generated (no dual infeasible variables found) and thus SYM-
PHONY decides branching is called for and invokes user select candidates().
However, in that function the user checks the slack cuts, finds that some are vio-
lated, cancels the branching request and adds the violated cuts to the relaxation
instead.

Warning: The cuts the user unpacks and wants to be added to the problem (either because
they are of type VIOLATED SLACK or type CANDIDATE CUT NOT IN MATRIX) will be deleted
from the list of slack cuts after this routine returns. Therefore the same warning applies
here as in the function user unpack cuts().

Wrapper invoked from: select branching object().

. user select candidates

int user_select_candidates(void *user, double lpetol, int cutnum,
int slacks_in_matrix_num,
cut_data **slacks_in_matrix,
int slack_cut_num, cut_data **slack_cuts,
int varnum, var_desc **vars, double *x,
char *status, int *cand_num,
branch_obj ***candidates, int *action,
int bc_level)

Description:
The purpose of this function is to generate branching candidates. Note that *action
from user shall we branch() is passed on to this function (but its value can be
changed here, see notes at the previous function), as well as the candidates in
**candidates and their number in *cand num if there were any.

Violated cuts found among the slack cuts (not in the matrix) can be added to
the candidate list. These violated cuts will be added to the LP relaxation regardless of
the value of *action.

The branch obj structure contains fields similar to the cut data data structure.
Branching is accomplished by imposing inequalities which divide the current subprob-
lem while cutting off the corresponding fractional solution. Branching on cuts and
variables is treated symmetrically and branching on a variable can be thought of as
imposing a constraint with a single unit entry in the appropriate column. Following is
a list of the fields of the branch obj data structure which must be set by the user.

10.2 User-written functions of the LP process 51

char type Can take five values:
CANDIDATE VARIABLE The object is a variable.
CANDIDATE CUT IN MATRIX The object is a cut (it must be slack) which is in the

current formulation.
CANDIDATE CUT NOT IN MATRIX The object is a cut (it must be slack) which has

been deleted from the formulation and is listed among the slack cuts.
VIOLATED SLACK The object is not offered as a candidate for branching, but rather

it is selected because it was among the slack cuts but became violated again.
SLACK TO BE DISCARDED The object is not selected as a candidate for branching

rather it is selected because it is a slack cut which should be discarded even
from the list of slack cuts.

int position The position of the object in the appropriate array (which is one of vars,
slacks in matrix, or slack cuts.

waiting row *row Used only if the type is CANDIDATE CUT NOT IN MATRIX or
VIOLATED SLACK. In these cases this field holds the row extension corresponding to
the cut. This structure can be filled out easily using a call to user unpack cuts().

int child num
The number of children of this branching object.

char *sense, double *rhs, double *range, int *branch
The description of the children. These arrays determine the sense, rhs, etc. for the
cut to be imposed in each of the children. These are defined and used exactly as in
the cut data data structure. Note: If a limit is defined on the number of children
by defining the MAX CHILDREN NUM macro to be a number (it is pre-defined to be 4
as a default), then these arrays will be statically defined to be the correct length
and don’t have to be allocated. This option is highly recommended. Otherwise, the
user must allocate them to be of length child num.

double lhs The activity level for the row (for branching cuts). This field is purely for
the user’s convenience. SYMPHONY doesn’t use it so it need not be filled out.

double *objval, int *termcode, int *iterd, int *feasible
The objective values, termination codes, number of iterations and feasibility stati of
the children after pre-solving them. These are all filed out by SYMPHONY during
strong branching. The user may access them in user compare candidates() (see
below).

There are three default options (see below), each chooses a few variables (the number is
determined by the strong branching parameters (see Section 11.5).

Arguments:
Same as for user shall we branch(), except that *action must be either
USER DO BRANCH or USER DO NOT BRANCH, and if branching is asked
for, there must be a real candidate in the candidate list (not only
VIOLATED SLACKs and SLACK TO BE DISCARDEDs). Also, the argument bc level
is the level in the tree. This could be used in deciding how many
strong branching candidates to use.

Return values:

52 10 THE USER API SPECIFICATION

ERROR Error. DEFAULT is used.
USER NO PP User generated branching candidates.
DEFAULT Regulated by the

select candidates default parameter
(one of the following three
options).

USER CLOSE TO HALF Choose variables with values closest
to half.

USER CLOSE TO HALF AND EXPENSIVE Choose variables with values close
to half and with high objective
function coefficients.

USER CLOSE TO ONE AND CHEAP Choose variables with values close
to one and with low objective
function coefficients.

Wrapper invoked from: select branching object().

Notes: See the notes at user shall we branch().

. user compare candidates

int user_compare_candidates(void *user, branch_obj *can1, branch_obj *can2,
int *which_is_better)

Description:

By the time this function is invoked, the children of the current search tree node
corresponding to each branching candidate have been pre-solved, i.e., the objval,
termcode, iterd, and feasible fields of the can1 and can2 structures are filled out.
Note that if the termination code for a child is D UNBOUNDED or D OBJLIM, i.e., the dual
problem is unbounded or the objective limit is reached, then the objective value of that
child is set to MAXDOUBLE / 2. Similarly, if the termination code is one of D ITLIM
(iteration limit reached), D INFEASIBLE (dual infeasible) or ABANDONED (because of
numerical difficulties) then the objective value of that child is set to that of the parent’s.

Based on this information the user must choose which candidate he considers better
and whether to branch on this better one immediately without checking the remaining
candidates. As such, there are four possible answers: FIRST CANDIDATE BETTER,
SECOND CANDIDATE BETTER, FIRST CANDIDATE BETTER AND BRANCH ON IT
and SECOND CANDIDATE BETTER AND BRANCH ON IT. An answer ending with
AND BRANCH ON IT indicates that the user wants to terminate the strong branch-
ing process and select that particular candidate for branching.

There are several default options. In each of them, objective values of the pre-
solved LP relaxations are compared.

Arguments:

10.2 User-written functions of the LP process 53

void *user IN Pointer to the user-defined LP data structure.

branch obj *can1 IN One of the candidates to be compared.
branch obj *can2 IN The other candidate to be compared.
int *which is better OUT The user’s choice. See the description above.

Return values:
ERROR Error. DEFAULT is used.
USER NO PP User filled out *which is better.
DEFAULT Regulated by the compare candidates default parameter,

initially set to LOWEST LOW OBJ unless over-ridden by the user.
BIGGEST DIFFERENCE Prefer the candidate with the biggest difference between high-

est and lowest objective function values.
LOWEST LOW Prefer the candidate with the lowest minimum objective func-

tion value. The minimum is taken over the objective function
values of all the children.

HIGHEST LOW Prefer the candidate with the highest minimum objective
function value.

LOWEST HIGH Prefer the candidate with the lowest maximum objective
function value.

HIGHEST HIGH Prefer the candidate with the highest maximum objective
function value .

Wrapper invoked from: select branching object() after the LP relaxations of the chil-
dren have been pre-solved.

. user select child

int user_select_child(void *user, double ub, branch_obj *can, char *action)

Description:

By the time this function is invoked, the candidate for branching has been chosen.
Based on this information and the current best upper bound, the user has to decide
what to do with each child. Possible actions for a child are KEEP THIS CHILD (the child
will be kept at this LP for further processing, i.e., the process dives into that child),
PRUNE THIS CHILD (the child will be pruned based on some problem specific property—
no questions asked...), PRUNE THIS CHILD FATHOMABLE (the child will be pruned based
on its pre-solved LP relaxation) and RETURN THIS CHILD (the child will be sent back to
tree manager). Note that at most one child can be kept at the current LP process.

There are two default options—in both of them, objective values of the pre-solved LP
relaxations are compared (for those children whose pre-solve did not terminate with
primal infeasibility or high cost). One rule prefers the child with the lowest objective
function value and the other prefers the child with the higher objective function value.

Arguments:

54 10 THE USER API SPECIFICATION

void *user IN Pointer to the user-defined LP data structure.

int ub IN The current best upper bound.
double etol IN Epsilon tolerance.
branch obj *can IN The branching candidate.

char *action OUT Array of actions for the children. The array is already
allocated to length can->number.

Return values:
ERROR Error. DEFAULT is used.
USER NO PP User filled out *action.
USER AND PP User filled out *action and did an equivalent of the

post-processing.
DEFAULT Regulated by the select child default parameter,

which is initially set to PREFER LOWER OBJ VALUE, un-
less over-ridden by the user.

PREFER HIGHER OBJ VALUE Choose child with the highest objective value.
PREFER LOWER OBJ VALUE Choose child with the lowest objective value.

Post-processing:
Checks which children can be fathomed based on the objective value of their pre-solved
LP relaxation.

Wrapper invoked from: branch().

. user print branch stat

int user_print_branch_stat(void *user, branch_obj *can, cut_data *cut,
char *action)

Description:
Print out information about branching candidate can, such as a more explicit problem-
specific description than SYMPHONY can provide (for instance, end points of an edge).
If verbosity is set high enough, the identity of the branching object and the children
(with objective values and termination codes for the pre-solved LPs) is printed out to
the standard output by SYMPHONY.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

branch obj *can IN The branching candidate.
cut data *cut IN The description of the cut if the branching object is a cut.
char *action IN Array of actions for the children.

Return values:
ERROR Error. Ignored by SYMPHONY.
USER NO PP The user printed out whatever she wanted to.

Wrapper invoked from: branch() after the best candidate has been selected, pre-solved,
and the action is decided on for the children.

10.2 User-written functions of the LP process 55

. user add to desc

int user_add_to_desc(void *user, int *desc_size, char **desc)

Description:
Before a node description is sent to the TM, the user can provide a pointer to a
data structure that will be appended to the description for later use by the user in
reconstruction of the node. This information must be placed into *desc. Its size should
be returned in *desc size.

There is only one default option: the description to be added is considered to be
of zero length, i.e., there is no additional description.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int *desc size OUT The size of the additional information, the length of *desc
in bytes.

char **desc OUT Pointer to the additional information (space must be allo-
cated by the user).

Return values:
ERROR Error. DEFAULT is used.
USER NO PP User filled out *desc size and *desc.
DEFAULT No description is appended.

Wrapper invoked from: create explicit node desc() before a node is sent to the tree
manager.

. user same cuts

int user_same_cuts (void *user, cut_data *cut1, cut_data *cut2,
int *same_cuts)

Description:
Determine whether the two cuts are comparable (the normals of the half-spaces corre-
sponding to the cuts point in the same direction) and if yes, which one is stronger. The
default is to declare the cuts comparable only if the type, sense and coef fields of the
two cuts are the same byte by byte; and if this is the case to compare the right hand
sides to decide which cut is stronger.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

cut data *cut1 IN The first cut.
cut data *cut2 IN The second cut.
int *same cuts OUT Possible values: SAME, FIRST CUT BETTER,

SECOND CUT BETTER and DIFFERENT (i.e., not com-
parable).

56 10 THE USER API SPECIFICATION

Return values:
ERROR Error. DEFAULT is used.
USER NO PP User did the comparison, filled out *same cuts.
DEFAULT Compare byte by byte (see above).

Wrapper invoked from: process message() when a PACKED CUT arrives.

Note:
This function is used to check whether a newly arrived cut is already in the local pool.
If so, or if it is weaker than a cut in the local pool, then the new cut is discarded; if it
is stronger then a cut in the local pool, then the new cut replaces the old one and if the
new is different from all the old ones, then it is added to the local pool.

. user unpack cuts

int user_unpack_cuts(void *user, int from, int one_row_only, int varnum,
var_desc **vars, int cutnum, cut_data **cuts,
int *new_row_num, waiting_row ***new_rows)

Description:
The user has to interpret the given cuts as constraints for the current LP relaxation,
i.e., he must decode the compact representation of the cuts (see the cut data structure)
into rows for the matrix. A pointer to the array of generated rows must be returned in
***new rows (the user has to allocate this array) and their number in *new row num.
There is no post processing. There are no built-in default options.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int from IN See below in “Notes”.
int one row only IN UNPACK CUTS SINGLE or

UNPACK CUTS MULTIPLE (see notes below).
int varnum IN The number of variables.
var desc **vars IN The variables currently in the problem.
int cutnum IN The number of cuts to be decoded.
cut data **cuts IN Cuts that need to be converted to rows for the

current LP. See “Warning” below.

int *new row num OUT Pointer to the number of rows in **new rows.
waiting row ***new rows OUT Pointer to the array of pointers to the new rows.

Return values:
ERROR Error. The cuts are discarded.
USER NO PP User unpacked the cuts.

Wrapper invoked from: Wherever a cut needs to be unpacked (multiple places).

Notes:

• When decoding the cuts, the expanded constraints have to be adjusted to the current
LP, i.e., coefficients corresponding to variables currently not in the LP have to be
left out.

10.2 User-written functions of the LP process 57

• If the one row only flag is set to UNPACK CUTS MULTIPLE, then the user can generate
as many constraints (even zero!) from a cut as she wants (this way she can lift
the cuts, thus adjusting them for the current LP). However, if the flag is set to
UNPACK CUTS SINGLE, then for each cut the user must generate a unique row, the
same one that had been generated from the cut before. (The flag is set to this value
only when regenerating a search tree node.)

• The from argument can take on six different values: CUT FROM CG, CUT FROM CP,
CUT FROM TM, CUT LEFTOVER (these are cuts from a previous LP relaxation that are
still in the local pool), CUT NOT IN MATRIX SLACK and CUT VIOLATED SLACK indicat-
ing where the cut came from. This might be useful in deciding whether to lift the
cut or not.

• The matind fields of the rows must be filled with indices with respect to the position
of the variables in **vars.

• Warning: For each row, the user must make sure that the cut the row was generated
from (and can be uniquely regenerated from if needed later) is safely stored in
the waiting row structure. SYMPHONY will free the entries in cuts after this
function returns. If a row is generated from a cut in cuts (and not from a lifted cut),
the user has the option of physically copying the cut into the corresponding part of
the waiting row structure, or copying the pointer to the cut into the waiting row
structure and erasing the pointer in cuts. If a row is generated from a lifted cut, the
user should store a copy of the lifted cut in the corresponding part of waiting row.

. user send lp solution

int user_send_lp_solution(void *user, int varnum, var_desc **vars,
double *x, int where)

Description:

The user has the option to send the LP solution to either the cut pool or the cut generator
in some user-defined form if desired. There are two default options—sending the indices
and values for all nonzero variables (SEND NONZEROS) and sending the indices and values
for all fractional variables (SEND FRACTIONS).

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int varnum IN The number of variables currently in the LP relaxation.
(The length of the *vars and x arrays.)

var desc **vars IN The variables currently in the LP relaxation.
double *x IN Values of the above variables.
int where IN Where the solution is to be sent—LP SOL TO CG or

LP SOL TO CP.

Return values:

58 10 THE USER API SPECIFICATION

ERROR Error. No message will be sent.
USER NO PP User packed and sent the message.
DEFAULT Regulated by the pack lp solution default parameter, initially

set to SEND NOZEROS.
SEND NONZEROS Send user indices and values of variables at nonzero level.
SEND FRACTIONS Send user indices and values of variables at fractional level.

Wrapper invoked from: fathom branch() after an LP relaxation has been solved. The
message is always sent to the cut generator (if there is one). The message is sent to the
cut pool if a search tree node at the top of a chain is being processed (except at the root
in the first phase), or if a given number (cut pool check freq) of LP relaxations have
been solved since the last check.

Note:
The wrapper automatically packs the level, index, and iteration number corresponding
to the current LP solution within the current search tree node, as well as the objective
value and upper bound in case the solution is sent to a cut generator. This data will
be unpacked by SYMPHONY on the receiving end, the user will have to unpack there
exactly what he has packed here.

. user logical fixing

int user_logical_fixing(void *user, int varnum, var_desc **vars,
double *x, char *status)

Description:
Logical fixing is modifying the stati of variables based on logical implications derived
from problem-specific information. In this function the user can modify the status
of any variable. Valid stati are: NOT FIXED, TEMP FIXED TO LB, PERM FIXED TO LB,
TEMP FIXED TO UB and PERM FIXED TO UB. Be forewarned that fallaciously fixing a vari-
able in this function can cause the algorithm to terminate improperly. Generally, a
variable can only be fixed permanently if the matrix is full at the time of the fixing (i.e.
all variables that are not fixed are in the matrix). There are no default options.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int varnum IN The number of variables currently in the LP relaxation.
(The length of the *vars and x arrays.)

var desc **vars IN The variables currently in the LP relaxation.
double *x IN Values of the above variables.
char *status INOUT Stati of variables currently in the LP relaxation.

Return values:
ERROR Error. Ignored by SYMPHONY.
USER NO PP User changed the stati of the variables she wanted.

Wrapper invoked from: fix variables() after doing reduced cost fixing, but only when
a specified number of variables have been fixed by reduced cost (see LP parameter
settings).

10.2 User-written functions of the LP process 59

. user generate column

int user_generate_column(void *user, int generate_what, int cutnum,
cut_data **cuts, int prevind, int nextind,
int *real_nextind, double *colval,
int *colind, int *collen, double *obj)

Description:
This function is called when pricing out the columns that are not already fixed and are
not explicitly represented in the matrix. Only the user knows the explicit description
of these columns. When a missing variable need to be priced, the user is asked to
provide the corresponding column. SYMPHONY scans through the known variables
in the order of their user indices. After testing a variable in the matrix (prevind),
SYMPHONY asks the user if there are any missing variables to be priced before the
next variable in the matrix (nextind). If there are missing variables before nextind, the
user has to supply the user index of the real next variable (real nextind) along with
the corresponding column. Occasionally SYMPHONY asks the user to simply supply
the column corresponding to nextind. The generate what flag is used for making a
distinction between the two cases: in the former case it is set to GENERATE REAL NEXTIND
and in the latter it is set to GENERATE NEXTIND.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int generate what IN GENERATE NEXTIND or GENERATE REAL NEXTIND (see
description above).

int cutnum IN The number of added rows in the LP formulation (i.e.,
the total number of rows less the number of base con-
straints). This is the length of the **cuts array.

cut data **cuts IN Description of the cuts corresponding to the added rows
of the current LP formulation. The user is supposed
to know about the cuts corresponding to the base con-
straints.

int prevind IN The last variable processed (−1 if there was none) by
SYMPHONY.

int nextind IN The next variable (−1 if there are none) known to
SYMPHONY.

int *real nextind OUT Pointer to the user index of the next variable (−1 if
there is none).

double *colval OUT Values of the nonzero entries in the column of the next
variable. (Sufficient space is already allocated for this
array.)

int *colind OUT Row indices of the nonzero entries in the column. (Suf-
ficient space is already allocated for this array.)

int *collen OUT The length of the colval and colind arrays.
double *obj OUT Objective coefficient corresponding to the next vari-

able.

60 10 THE USER API SPECIFICATION

Return values:
ERROR Error. The LP process is aborted.
USER NO PP User filled out *real nextind and generated its column if

needed.
Wrapper invoked from: price all vars() and restore lp feasibility().

Note:
colval, colind, collen and obj do not need to be filled out if real nextind is the
same as nextind and generate what is GENERATE REAL NEXTIND.

. user generate cuts in lp

int user_generate_cuts_in_lp(void *user, int varnum, var_desc **vars,
double *x, int *new_row_num,
waiting_row ***new_rows)

Description:
The user might decide to generate cuts directly within the LP process instead of using
the cut generator. This can be accomplished either through a call to this function
or simply by configuring SYMPHONY such that the cut generator is called directly
from the LP solver. One example of when this might be done is when generating
Gomory cuts (this is planned to be part of SYMPHONY later) or something else
that requires knowledge of the current LP tableau. The IN arguments are the same
as in user send lp solution() (except that there is no where argument). Not only
the generated cuts but the corresponding rows must be returned (the cuts are in the
waiting row structures) because the user unpack cuts() function will not be invoked
for the generated cuts. Also, the user must fill out the violation field for every
row. The reason for this is that any cut generated here will definitely correspond to
the current LP solution so the user must have already computed the violation when
generating the cut.

Post-processing consists of checking if any of the new cuts are already in the lo-
cal pool (or dominated by a cut in the local pool). Since the user will probably use this
function to generate tableau-dependent cuts, it is highly unlikely that any of the new
cuts would already be in the pool. Therefore the user will probably return USER AND PP
to force SYMPHONY to skip post-processing.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int varnum IN The number of variables currently in the LP
relaxation. (The length of the *vars and x ar-
rays.)

var desc **vars IN The variables currently in the LP relaxation.
double *x IN Values of the above variables.
int *new row num OUT The number of cuts generated.
waiting row ***new rows OUT The cuts and the corresponding rows.

10.2 User-written functions of the LP process 61

Return values:
ERROR Error. Interpreted as if no cuts were generated.
USER NO PP Cuts were generated but SYMPHONY must compare them to those

in the local pool.
USER AND PP Cuts were generated and SYMPHONY should not compare them to

those in the local pool.
DEFAULT No cuts are generated. (At least for now. We might add Gomory cuts

for default later.)
Post-processing:

SYMPHONY checks if any of the newly generated rows are already in the local pool.

Wrapper invoked from: receive cuts() before the cuts from the CG process are re-
ceived. Since the user will probably use this function to generate tableau-dependent cuts,
it is highly unlikely that any of the new cuts would already be in the pool. Therefore the
user will probably return USER AND PP to force SYMPHONY to skip post-processing.

Notes:

• Just like in user unpack cuts(), the user has to allocate space for the rows.
• Unless the name field of a cut is explicitly set to CUT SEND TO CP, SYM-

PHONY will assume that the cut is locally valid only and set that field to
CUT DO NOT SEND TO CP.

. user print stat on cuts added

int user_print_stat_on_cuts_added(void *user, int rownum, waiting_row **rows)

Description:
The user can print out some information (if he wishes to) on the cuts that will be added
to the LP formulation. The default is to print out the number of cuts added.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int rownum IN The number of cuts added.
waiting row **rows IN Array of waiting rows containing the cuts added.

Return values:
ERROR Revert to default.
USER AND PP User printed whatever he wanted.
DEFAULT Print out the number of cuts added.

Wrapper invoked from: add best waiting rows() after it has been decided how many
cuts to add and after the cuts have been selected from the local pool.

. user purge waiting rows

int user_purge_waiting_rows(void *user, int rownum,
waiting_row **rows, char *delete)

62 10 THE USER API SPECIFICATION

Description:
The local pool is purged from time to time to control its size. In this function the user
has the power to decide which cuts to purge from this pool if desired. To mark the ith

waiting row (an element of the pre-pool) for removal she has to set delete[i] to be
TRUE (delete is allocated before the function is called and its elements are set to FALSE
by default).

Post-processing consists of actually deleting those entries from the waiting row
list and compressing the list. The default is to discard the least violated waiting rows
and keep no more than what can be added in the next iteration (this is determined by
the max cut num per iter parameter).

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int rownum IN The number of waiting rows.
waiting row **rows IN The array of waiting rows.
char *delete OUT An array of indicators (each of them is one char)

showing which waiting rows are to be deleted.
Return values:

ERROR Purge every single waiting row.
USER AND PP The user removed the unwanted waiting rows and compressed the

remaining list.
USER NO PP The user marked in delete the rows to be deleted.
DEFAULT Described above.

Post-processing:
Delete the appropriate rows.

Wrapper invoked from: receive cuts() after cuts have been added.

10.3 User-written functions of the CG process 63

10.3 User-written functions of the CG process

Due to the relative simplicity of the cut generator, there are no wrapper functions implemented for
CG. Consequently, there are no default options and no post-processing.

. user receive cg data

int user_receive_cg_data (void **user)

Description:
The user has to receive here all problem-specific information that is known to the master
and will be needed for computation in the CG process later on. The same data must be
received here that was sent in the user send cg data() (see Section 10.1) function in the
master process. The user has to allocate space for all the data structures, including user
itself. Note that some or all of this may be done in the function user send cg data()
if the Tree Manager, LP, and CG are all compiled together. See that function for more
information.

Arguments:
void **user INOUT Pointer to the user-defined data structure.

Return values:
ERROR Error. CG exits.
USER NO PP The user received the data properly.

Invoked from: cg initialize() at process start.

. user receive lp solution cg

int user_receive_lp_solution_cg(void *user)

Description:
This function is invoked only if in the user send lp solution() function of the LP
process the user opted for packing the current LP solution himself. Here he must unpack
the very same data he packed there.

Arguments:
void *user IN Pointer to the user-defined data structure.

Invoked from: Whenever an LP solution is received.

Return values:
ERROR Error. This LP solution is not processed.
USER NO PP The user received the LP solution.

Note:
SYMPHONY automatically unpacks the level, index and iteration number correspond-
ing to the current LP solution within the current search tree node as well as the objective
value and upper bound.

. user free cg

64 10 THE USER API SPECIFICATION

int user_free_cg(void **user)

Description:
The user has to free all the data structures within user, and also free user itself. The
user can use the built-in macro FREE that checks the existence of a pointer before freeing
it.

Arguments:
void **user INOUT Pointer to the user-defined data structure (should be NULL

on exit from this function).
Return values:

ERROR Ignored.
USER NO PP The user freed all data structures.

Invoked from: cg close() at process shutdown.

. user find cuts

int user_find_cuts(void *user, int varnum, int iter_num, int level,
int index, double objval, int *indices, double *values,
double ub, double lpetol, int *cutnum)

Description:
The user can generate cuts based on the current LP solution stored in soln. Cuts
found need to be sent back to the LP by calling the cg send cut(cut data *new cut)
function. The argument of this function is a pointer to the cut to be sent. See Section
10.2 for a description of this data structure. If the user wants the cut to be added to
the cut pool in case it proves to be effective in the LP, then new cut->name should be
set to CUT SEND TO CP. Otherwise, it should be set to CUT DO NOT SEND TO CP.

The only output of this function is the number of cuts generated and this value
is returned in the last argument.

Arguments:
void *user IN Pointer to the user-defined data structure.
int iter num IN The iteration number of the current LP solution.
int level IN The level in the tree on which the current LP solution was

generated.
index IN The index of the node in which LP solution was generated.
objval IN The objective function value of the current LP solution.
int varnum IN The number of nonzeros in the current LP solution.
indices IN The column indices of the nonzero variables in the current

LP solution.
values IN The values of the nonzero variables listed in indices.
double ub IN The current global upper bound.
double lpetol IN The current error tolerance in the LP.
int *cutnum OUT Pointer to the number of cuts generated and sent to the

LP.

10.3 User-written functions of the CG process 65

Return values:
ERROR Ignored.
USER NO PP The user function exited properly.

Invoked from: Whenever an LP solution is received.

. user check validity of cut

int user_check_validity_of_cut(void *user, cut_data *new_cut)

Description:
This function is provided as a debugging tool. Every cut that is to be sent to the LP
solver is first passed to this function where the user can independently verify that the
cut is valid by testing it against a known feasible solution (usually an optimal one). This
is useful for determining why a particular known feasible (optimal) solution was never
found. Usually, this is due to an invalid cut being added. See Section 9.7.4 for more on
this feature.

Arguments:
void *user IN Pointer to the user-defined data structure.
cut data *new cut IN Pointer to the cut that must be checked.

Return values:
ERROR Ignored.
USER NO PP The user is done checking the cut.

Invoked from: Whenever a cut is being sent to the LP.

66 10 THE USER API SPECIFICATION

10.4 User-written functions of the CP process

Due to the relative simplicity of the cut pool, there are no wrapper functions implemented for CP.
Consequently, there are no default options and no post-processing.

. user receive cp data

int user_receive_cp_data(void **user)

Description:
The user has to receive here all problem-specific information sent from
user send cp data() (see Section 10.1) function in the master process. The user
has to allocate space for all the data structures, including user itself. Note that this
function is only called if the either the Tree Manager, LP, or CP are running as a
separate process (i.e. either COMPILE IN TM, COMPILE IN LP, or COMPILE IN CP are set
to FALSE in the make file). Otherwise, this is done in user send cp data(). See the
description of that function for more details.

Arguments:
void **user INOUT Pointer to the user-defined data structure.

Return values:
ERROR Error. Cut Pool exits.
USER NO PP The user received data successfully.

Invoked from: cp initialize at process start.

. user free cp

int user_free_cp(void **user)

Description:
The user has to free all the data structures within user, and also free user itself. The
user can use the built-in macro FREE that checks the existence of a pointer before freeing
it.

Arguments:
void **user INOUT Pointer to the user-defined data structure (should be NULL

on exit).

Return values:
ERROR Ignored.
USER NO PP The user freed all data structures.

Invoked from: cp close() at process shutdown.

. user receive lp solution cp

void user_receive_lp_solution_cp(void *user)

10.4 User-written functions of the CP process 67

Description:
This function is invoked only if in the user send lp solution() function of the LP
process the user opted for packing the current LP solution herself. Here she must receive
the very same data she sent there.

Arguments:
void *user IN Pointer to the user-defined data structure.

Return values:
ERROR Cuts are not checked for this LP solution.
USER NO PP The user function exited properly.

Invoked from: Whenever an LP solution is received.

Note:
SYMPHONY automatically unpacks the level, index and iteration number correspond-
ing to the current LP solution within the current search tree node.

. user prepare to check cuts

int user_prepare_to_check_cuts(void *user, int varnum, int *indices,
double *values)

Description:
This function is invoked after an LP solution is received but before any cuts are tested.
Here the user can build up data structures (e.g., a graph representation of the solution)
that can make the testing of cuts easier in the user check cuts function.

Arguments:
void *user IN Pointer to the user-defined data structure.
int varnum IN The number of nonzero/fractional variables described in

indices and values.
int *indices IN The user indices of the nonzero/fractional variables.
double *values IN The nonzero/fractional values.

Return values:
ERROR Cuts are not checked for this LP solution.
USER NO PP The user is prepared to check cuts.

Invoked from: Whenever an LP solution is received.

. user check cut

int user_check_cut(void *user, double lpetol, int varnum,
int *indices, double *values, cut_data *cut,
int *is_violated, double *quality)

Description:
The user has to determine whether a given cut is violated by the given LP solution (see
Section 10.2 for a description of the cut data data data structure). Also, the user can
assign a number to the cut called the quality. This number is used in deciding which
cuts to check and purge. See the section on Cut Pool Parameters for more information.

68 10 THE USER API SPECIFICATION

Arguments:
void *user INOUT The user defined part of p.
double lpetol IN The ε tolerance in the LP process.
int varnum IN Same as the previous function.
int *indices IN Same as the previous function.
double *values IN Same as the previous function.
cut data *cut IN Pointer to the cut to be tested.
int *is violated OUT TRUE/FALSE based on whether the cut is violated

or not.
double *quality OUT a number representing the relative strength of the cut.

Return values:
ERROR Cut is not sent to the LP, regardless of the value of

*is violated.
USER NO PP The user function exited properly.

Invoked from: Whenever a cut needs to be checked.

Note:
The same note applies to number, indices and values as in the previous function.

. user finished checking cuts

int user_finished_checking_cuts(void *user)

Description:
When this function is invoked there are no more cuts to be checked, so the user can dis-
mantle data structures he created in user prepare to check cuts. Also, if he received
and stored the LP solution himself he can delete it now.

Arguments:
void *user IN Pointer to the user-defined data structure.

Return values:
ERROR Ignored.
USER NO PP The user function exited properly.

Invoked from: After all cuts have been checked.

10.5 User-written functions of the Draw Graph process

Due to the relative simplicity of the cut pool, there are no wrapper functions implemented for DG.
Consequently, there are no default options and no post-processing.

. user dg process message

void user_dg_process_message(void *user, window *win, FILE *write_to)

10.5 User-written functions of the Draw Graph process 69

Description:
The user has to process whatever user-defined messages are sent to the process. A write-
to pipe to the wish process is provided so that the user can directly issue commands
there.

Arguments:
void *user INOUT Pointer to the user-defined data structure.
window *win INOUT The window that received the message.
FILE *write to IN Pipe to the wish process.

Return values:
ERROR Error. Message ignored.
USER NO PP The user processed the message.

. user dg init window

void user_dg_init_window(void **user, window *win)

Description:
The user must perform whatever initialization is necessary for processing later com-
mands. This usually includes setting up the user’s data structure for receiving and
storing display data.

Arguments:
void **user INOUT Pointer to the user-defined data structure.
window *win INOUT

Return values:
ERROR Error. Ignored.
USER NO PP The user successfully performed initialization.

. user dg free window

void user_dg_free_window(void **user, window *win)

Description:
The user must free any data structures allocated.

Arguments:
void **user INOUT Pointer to the user-defined data structure.
window *win INOUT

Return values:
ERROR Error. Ignored.
USER NO PP The user successfully freed the data structures.

. user interpret text

void user_interpret_text(void *user, int text_length,
char *text, int owner_tid)

70 11 SYMPHONY PARAMETERS

Description:
The user can interpret text input from the window.

Arguments:
void *user INOUT Pointer to the user-defined data structure.
int text length IN The length of text.
char *text IN
int owner tid IN The tid of the process that initiated this window.

Return values:
ERROR Error. Ignored.
USER NO PP The user successfully interpreted the text.

11 SYMPHONY Parameters

Parameters can be set in one of two ways. Some commonly-used parameters can be set on the
command line. To see a list of these, run SYMPHONY with no command-line arguments. Other
parameters must be set in a parameter file. The name of this file is specified on the command line
with “-f”. Each line of the parameter file contains either a comment or two words – a keyword
and a value, separated by white space. If the first word (sequence of non-white-space characters)
on a line is not a keyword, then the line is considered a comment line. Otherwise the parameter
corresponding to the keyword is set to the listed value. Usually the keyword is the same as the
parameter name in the source code. Here we list the keywords, the type of value that should be
given with the keywords and the default value. A parameter corresponding to keyword “K” in
process “P” can also be set by using the keyword “P K”.

To make this list shorter, occasionally a comma separated list of parameters is given if the
meanings of those parameters are strongly connected. For clarity, the constant name is sometimes
given instead of the numerical value for default settings and options. The corresponding value is
given in curly braces for convenience.

11.1 Global parameters

verbosity – integer (0). Sets the verbosity of all processes to the given value. In general, the
greater this number the more verbose each process is. Experiment to find out what this
means.

random seed – integer (17). A random seed.

granularity – double (1e-6). should be set to “the minimum difference between two distinct
objective function values” less the epsilon tolerance. E.g., if every variable is integral and the
objective coefficients are integral then for any feasible solution the objective value is integer,
so granularity could be correctly set to .99999.

upper bound – double (none) . The value of the best known upper bound.

11.2 Master Process parameters

M verbosity – integer (0).

11.3 Draw Graph parameters 71

M random seed – integer (17). A random seed just for the Master Process.

upper bound – double (no upper bound). This parameter is used if the user wants to artifi-
cially impose an upper bound (for instance if a solution of that value is already known).

upper bound estimate – double (no estimate). This parameter is used if the user wants to
provide an estimate of the optimal value which will help guide the search. This is used in
conjunction with the diving strategy BEST ESTIMATE.

tm exe, dg exe – strings (“tm”, “dg”). The name of the executable files of the TM
and DG processes. Note that the TM executable name may have extensions that
depend on the configuration of the modules, but the default is always set
to the file name produced by the make file. If you change the name of the
treemanager executable from the default, you must set this parameter to the
new name.

tm debug, dg debug – boolean (both FALSE). Whether these processes should be
started under a debugger or not (see 9.7.2 for more details on this).

tm machine – string (empty string). On which processor of the virtual machine the
TM should be run. Leaving this parameter as an empty string means arbitrary
selection.

do draw graph – boolean (FALSE). Whether to start up the DG process or not (see
Section 9.7.5 for an introduction to this).

do branch and cut – boolean (TRUE). Whether to run the branch and cut algorithm or
not. (Set this to FALSE to run the user’s heuristics only.)

11.3 Draw Graph parameters

source path – string (“.”). The directory where the DG tcl/tk scripts reside.

echo commands – boolean (FALSE). Whether to echo the tcl/tk commands on the screen or not.

canvas width, canvas height – integers (1000, 700). The default width and height of the
drawing canvas in pixels.

viewable width, viewable height – integers (600, 400). The default viewable width and
height of the drawing canvas in pixels.

interactive mode – integer (TRUE). Whether it is allowable to change things interactively on
the canvas or not.

node radius – integer (8). The default radius of a displayed graph node.

disp nodelabels, disp nodeweights, disp edgeweights – integers (all TRUE). Whether to
display node labels, node weights, and edge weights or not.

nodelabel font, nodeweight font, edgeweight font – strings (all “-adobe-helvetica-...”).
The default character font for displaying node labels, node weights and edge weights.

72 11 SYMPHONY PARAMETERS

node dash, edge dash – strings (both empty string). The dash pattern of the circles drawn
around dashed nodes and that of dashed edges.

11.4 Tree Manager parameters

TM verbosity – integer (0). The verbosity of the TM process.

lp exe, cg exe, cp exe – strings (“lp”, “cg”, “cp”). The name of the LP, CG, and CP pro-
cess binaries. Note: when running in parallel using PVM, these executables (or links to
them) must reside in the PVM ROOT/bin/PVM ARCH/ directory. Also, be sure to note that the
executable names may have extensions that depend on the configuration of the modules, but
the defaults will always be set to the name that the make file produce.

lp debug, cg debug, cp debug – boolean (all FALSE). Whether the processes should be
started under a debugger or not.

max active nodes – integer (1). The maximum number of active search tree nodes—equal to
the number of LP and CG tandems to be started up.

max cp num – integer (0). The maximum number of cut pools to be used.

lp mach num, cg mach num, cp mach num – integers (all 0). The number of processors in the
virtual machine to run LP (CG, CP) processes. If this value is 0 then the processes will be
assigned to processors in round-robin order. Otherwise the next xx mach num lines describe
the processors where the LP (CG, CP) processes must run. The keyword – value pairs
on these lines must be TM xx machine and the name or IP address of a processor (the
processor names need not be distinct). In this case the actual processes are assigned in a
round robin fashion to the processors on this list.

This feature is useful if a specific software package is needed for some process, but
that software is not licensed for every node of the virtual machine or if a certain process
must run on a certain type of machine due to resource requirements.

use cg – boolean (FALSE). Whether to use a cut generator or not.

TM random seed – integer (17). The random seed used in the TM.

unconditional dive frac – double (0.1). The fraction of the nodes on which SYMPHONY
randomly dives unconditionally into one of the children.

diving strategy – integer (BEST ESTIMATE{0}). The strategy employed when deciding
whether to dive or not.

The BEST ESTIMATE{0} strategy continues to dive until the lower bound in the child
to be dived into exceeds the parameter upper bound estimate, which is given by the user.

The COMP BEST K{1} strategy computes the average lower bound on the best diving k
search tree nodes and decides to dive if the lower bound of the child to be dived into does
not exceed this average by more than the fraction diving threshold.

11.4 Tree Manager parameters 73

The COMP BEST K GAP{2} strategy takes the size of the gap into account when decid-
ing whether to dive. After the average lower bound of the best diving k nodes is computed,
the gap between this average lower bound and the current upper bound is computed.
Diving only occurs if the difference between the computed average lower bound and the
lower bound of the child to be dived into is at most the fraction diving threshold of the gap.

Note that fractional diving settings can override these strategies. See below.

diving k, diving threshold – integer, double (1, 0.0). See above.

fractional diving ratio, fractional diving num – integer (0.02, 0). Diving occurs auto-
matically if the number of fractional variables in the child to be dived into is less than
fractional diving num or the fraction of total variables that are fractional is less than
fractional diving ratio. This overrides the other diving rules. Note that in order for this
option to work, the code must be compiled with FRACTIONAL BRANCHING defined. This is the
default. See the Makefile for more details.

node selection rule – integer (LOWEST LP FIRST{0}). The rule for selecting the next search
tree node to be processed. This rule selects the one with lowest lower bound. Other possible
values are: HIGHEST LP FIRST{1}, BREADTH FIRST SEARCH{2} and DEPTH FIRST SEARCH{3}.

load balance level – integer (-1).] A naive attempt at load balancing on problems where sig-
nificant time is spent in the root node, contributing to a lack of parallel speed-up. Only a
prescribed number of iterations (load balance iter) are performed in the root node (and in
each subsequent node on a level less than or equal to load balance level) before branching
is forced in order to provide additional subproblems for the idle processors to work on. This
doesn’t work well in general.

load balance iter – integer (-1).] Works in tandem with the load balance level to attempt
some simple load balancing. See the above description.

keep description of pruned – integer (DISCARD{0}). Whether to keep the description of
pruned search tree nodes or not. The reasons to do this are (1) if the user wants to write out a
proof of optimality using the logging function, (2) for debugging, or (3) to get a visual picture
of the tree using the software VBCTOOL. Otherwise, keeping the pruned nodes around just
takes up memory.

There are three options if it is desired to keep some description of the pruned nodes
around. First, their full description can be written out to disk and freed from memory
(KEEP ON DISK FULL{1}). There is not really too much you can do with this kind of file, but
theoretically, it contains a full record of the solution process and could be used to provide
a certificate of optimality (if we were using exact arithmetic) using an independent verifier.
In this case, the line following keep description of pruned should be a line containing the
keyword pruned node file name with its corresponding value being the name of a file to
which a description of the pruned nodes can be written. The file does not need to exist and
will be over-written if it does exist.

If you have the software VBCTOOL (see Section 9.8), then you can alternatively just write
out the information VBCTOOL needs to display the tree (KEEP ON DISK VBC TOOL{2}).

74 11 SYMPHONY PARAMETERS

Finally, the user can set the value to of this parameter to KEEP IN MEMORY{2}, in which case
all pruned nodes will be kept in memory and written out to the regular log file if that option is
chosen. This is really only useful for debugging. Otherwise, pruned nodes should be flushed.

logging – integer (NO LOGGING{0}). Whether or not to write out the state of the search tree
and all other necessary data to disk periodically in order to allow a warm start in the case of
a system crash or to allow periodic viewing with VBCTOOL.

If the value of this parameter is set to FULL LOGGING{1}, then all information needed to warm
start the calculation will written out periodically. The next two lines of the parameter file
following should contain the keywords tree log file name and cut log file name along
with corresponding file names as values. These will be the files used to record the search tree
and related data and the list of cuts needed to reconstruct the tree.

If the value of the parameter is set to VBC TOOL{2}, then only the information VBCTOOL
needs to display the tree will be logged. This is not really a very useful option since a “live”
picture of the tree can be obtained using the vbc emulation parameter described below (see
Section 9.8 for more on this).

logging interval – integer (1800). Interval (in seconds) between writing out the above log
files.

warm start – boolean (0). Used to allow the tree manager to make a warm start by reading in
previously written log files. If this option is set, then the two line following must start with
the keywords warm start tree file name and warm start cut file name and include the
appropriate file names as the corresponding values.

vbc emulation – integer (NO VBC EMULATION{0}).] Determines whether or not to employ the VBC-
TOOL emulation mode. If one of these modes is chosen, then the tree will be displayed in
“real time” using the VBCTOOL Software. When using the option VBC EMULATION LIVE{2}
and piping the output directly to VBCTOOL, the tree will be displayed as it is constructed,
with color coding indicating the status of each node. With VBC EMULATION FILE{1} selected,
a log file will be produced which can later be read into VBCTOOL to produce an emulation of
the solution process at any desired speed. If VBC EMULATION FILE is selected, the the follow-
ing line should contain the keyword vbc emulation file name along with the corresponding
file name for a value.

price in root – boolean (FALSE). Whether to price out variables in the root node before the
second phase starts (called repricing the root).

trim search tree – boolean (FALSE). Whether to trim the search tree before the second phase
starts or not. Useful only if there are two phases. (It is very useful then.)

colgen in first phase, colgen in second phase – integers (both 4). These parameters de-
termine if and when to do column generation in the first and second phase of the algorithm.
The value of each parameter is obtained by setting the last four bits. The last two bits refer
to what to do when attempting to prune a node. If neither of the last two bits are set, then we
don’t do anything—we just prune it. If only the last bit is set, then we simply save the node
for the second phase without doing any column generation (yet). If only the second to last bit
is set, then we do column generation immediately and resolve if any new columns are found.

11.5 LP parameters 75

The next two higher bits determine whether or not to do column generation before branch-
ing. If only the third lowest bit is set, then no column generation occurs before branching. If
only the fourth lowest bit is set, then column generation is attempted before branching. The
default is not to generate columns before branching or fathoming, which corresponds to only
the third lowest bit being set, resulting in a default value of 4.

time limit – integer (0). Number of seconds of wall-clock time allowed for solution. When this
time limit is reached, the solution process will stop and the best solution found to that point,
along with other relevant data, will be output. A time limit of zero means there is no limit.

11.5 LP parameters

LP verbosity – integer (0). Verbosity level of the LP process.

set obj upper lim – boolean (FALSE). Whether to stop solving the LP relaxation when it’s op-
timal value is provably higher than the global upper bound. There are some advantages to
continuing the solution process anyway. For instance, this results in the highest possible lower
bound. On the other hand, if the matrix is full, this node will be pruned anyway and the rest
of the computation is pointless. This option should be set at FALSE for column generation
since the LP dual values may not be reliable otherwise.

try to recover from error – boolean (TRUE). Indicates what should be done in case the LP
solver is unable to solve a particular LP relaxation because of numerical problems. It is
possible to recover from this situation but further results may be suspect. On the other hand,
the entire solution process can be abandoned.

problem type – integer (ZERO ONE PROBLEM{0}). The type of problem being solved. Other val-
ues are INTEGER PROBLEM{1} or MIXED INTEGER PROBLEM{2}. (Caution: The mixed-integer
option is not well tested.)

cut pool check frequency – integer (10). The number of iterations between sending LP solu-
tions to the cut pool to find violated cuts. It is not advisable to check the cut pool too
frequently as the cut pool process can get bogged down and the LP solution generally do not
change that drastically from one iteration to the next anyway.

not fixed storage size – integer (2048). The not fixed list is a partial list of indices of vari-
ables not in the matrix that have not been fixed by reduced cost. Keeping this list allows
SYMPHONY to avoid repricing variables (an expensive operation) that are not in the matrix
because they have already been permanently fixed. When this array reaches its maximum
size, no more variable indices can be stored. It is therefore advisable to keep the maximum
size of this array as large as possible, given memory limitations.

max non dual feas to add min, max non dual feas to add max, max non dual feas to add frac –
integer, integer, double (20, 200, .05). These three parameters determine the maximum
number of non-dual-feasible columns that can be added in any one iteration after pricing.
This maximum is set to the indicated fraction of the current number of active columns unless
this numbers exceeds the given maximum or is less than the given minimum, in which case,
it is set to the max or min, respectively.

76 11 SYMPHONY PARAMETERS

max not fixable to add min, max not fixable to add max, max not fixable to add frac –
integer, integer, double (100, 500, .1). As above, these three parameters determine the
maximum number of new columns to be added to the problem because they cannot be priced
out. These variables are only added when trying to restore infeasibility and usually, this
does not require many variables anyway.

mat col compress num, mat col compress ratio – integer, double (50, .05). Determines
when the matrix should be physically compressed. This only happens when the number of
columns is high enough to make it “worthwhile.” The matrix is physically compressed when
the number of deleted columns exceeds either an absolute number and a specified fraction of
the current number of active columns.

mat row compress num, mat row compress ratio – integer, double (20, .05). Same as above
except for rows.

tailoff gap backsteps, tailoff gap frac – integer, double (2, .99). Determines when tai-
loff is detected in the LP process. Tailoff is reported if the average ratio of the current gap to
the previous iteration’s gap over the last tailoff gap backsteps iterations wasn’t at least
tailoff gap frac.

tailoff obj backsteps, tailoff obj frac – integer, double (2, .99). Same as above, only
the ratio is taken with respect to the change in objective function values instead of the
change in the gap.

ineff cnt to delete – integer (0). Determines after how many iterations of being deemed in-
effective a constraint is removed from the current relaxation.

eff cnt before cutpool – integer (3). Determines after how many iterations of being deemed
effective each cut will be sent to the global pool.

ineffective constraints – integer (BASIC SLACKS ARE INEFFECTIVE{2}). Determines under
what condition a constraint is deemed ineffective in the current relaxation. Other possible
values are NO CONSTRAINT IS INEFFECTIVE{0}, NONZERO SLACKS ARE INEFFECTIVE{1}, and
ZERO DUAL VALUES ARE INEFFECTIVE{3}.

base constraints always effective – boolean (TRUE). Determines whether the base con-
straints can ever be removed from the relaxation. In some case, removing the base constraints
from the problem can be disastrous depending on the assumptions made by the cut generator.

branch on cuts – boolean (FALSE). This informs the framework whether the user plans on
branching on cuts or not. If so, there is additional bookkeeping to be done, such as main-
taining a pool of slack cuts to be used for branching. Therefore, the user should not set this
flag unless he actually plans on using this feature.

discard slack cuts – integer (DISCARD SLACKS BEFORE NEW ITERATION{0}).
Determines when the pool of slack cuts is discarded. The other option is
DISCARD SLACKS WHEN STARTING NEW NODE{1}.

first lp first cut time out, first lp all cuts time out, later lp first cut time out,
later lp all cuts time out – double (0, 0, 5, 1). The next group of parameters determines

11.5 LP parameters 77

when the LP should give up waiting for cuts from the cut generator and start to solve the
relaxation in its current form or possibly branch if necessary. There are two factors that
contribute to determining this timeout. First is whether this is the first LP in the search
node of whether it is a later LP. Second is whether any cuts have been added already in
this iteration. The four timeout parameters correspond to the four possible combinations of
these two variables.

no cut timeout – This keyword does not have an associated value. If this keyword appears on a
line by itself or with a value, this tells the framework not to time out while waiting for cuts.
This is useful for debugging since it enables runs with a single LP process to be duplicated.

all cut timeout – double (no default). This keyword tells the framework to set all of the above
timeout parameters to the value indicated.

max cut num per iter – integer (20). The maximum number of cuts that can be added to the
LP in an iteration. The remaining cuts stay in the local pool to be added in subsequent
iterations, if they are strong enough.

do reduced cost fixing – boolean (FALSE). Whether or not to attempt to fix variables by re-
duced cost. This option is highly recommended

gap as ub frac, gap as last gap frac – double (.1, .7). Determines when reduced cost fixing
should be attempted. It is only done when the gap is within the fraction gap as ub frac of
the upper bound or when the gap has decreased by the fraction gap as last gap frac since
the last time variables were fixed.

do logical fixing – boolean (FALSE). Determines whether the user’s logical fixing routine
should be used.

fixed to ub before logical fixing, fixed to ub frac before logical fixing – integer,
double (1, .01). Determines when logical fixing should be attempted. It will be called only
when a certain absolute number and a certain number of variables have been fixed to their
upper bounds by reduced cost. This is because it is typically only after fixing variables to
their upper bound that other variables can be logically fixed.

max presolve iter – integer (10). Number of simplex iterations to be performed in the pre-
solve for strong branching.

strong branching cand num max, strong branching cand num min, strong branching red ratio
– integer (25, 5, 1). These three parameters together determine the num-
ber of strong branching candidates to be used by default. In the root node,
strong branching cand num max candidates are used. On each succeeding level, this number
is reduced by the number strong branching red ratio multiplied by the square of the level.
This continues until the number of candidates is reduced to strong branching cand num min
and then that number of candidates is used in all lower levels of the tree.

is feasible default – integer (TEST INTEGRALITY{1}). Determines the default test to be used
to determine feasibility. This parameter is provided so that the user can change the default
behavior without recompiling. The only other option is TEST ZERO ONE{0}.

78 11 SYMPHONY PARAMETERS

send feasible solution default – integer (SEND NONZEROS{0}). Determines the form in
which to send the feasible solution. This parameter is provided so that the user can change
the default behavior without recompiling. This is currently the only option.

send lp solution default – integer (SEND NONZEROS{0}). Determines the default form in
which to send the LP solution to the cut generator and cut pool. This parameter is provided
so that the user can change the default behavior without recompiling. The other option is
SEND FRACTIONS{1}.

display solution default – integer (DISP NOTHING{0}). Determines how to display the cur-
rent LP solution if desired. See the description of user display solution() for other pos-
sible values. This parameter is provided so that the user can change the default behavior
without recompiling.

shall we branch default – integer (USER BRANCH IF MUST{2}). Determines the de-
fault branching behavior. Other values are USER DO NOT BRANCH{0} (not recom-
mended as a default), USER DO BRANCH{1} (also not recommended as a default), and
USER BRANCH IF TAILOFF{3}. This parameter is provided so that the user can change the
default behavior without recompiling.

select candidates default – integer (USER CLOSE TO HALF AND EXPENSIVE{11}).
Determines the default rule for selecting strong branching candidates. Other values
are USER CLOSE TO HALF{10} and USER CLOSE TO ONE AND CHEAP{12}. This parameter is
provided so that the user can change the default behavior without recompiling.

compare candidates default – integer (LOWEST LOW OBJ{1}). Determines the default rule for
comparing candidates. See the description of user compare candidates() for other val-
ues. This parameter is provided so that the user can change the default behavior without
recompiling.

select child default – integer (PREFER LOWER OBJ VALUE{0}). Determines the default rule
for selecting the child to be processed next. For other possible values, see the description
user select child(). This parameter is provided so that the user can change the default
behavior without recompiling.

11.6 Cut Generator Parameters

CG verbosity – integer (0). Verbosity level for the cut generator process.

11.7 Cut Pool Parameters

CP verbosity – integer (0). Verbosity of the cut pool process.

cp logging – boolean (0). Determines whether the logging option is enabled. In this case, the
entire contents of the cut pool are written out periodically to disk (at the same interval as
the tree manager log files are written). If this option is set, then the line following must start
with the keyword cp log file name and include the appropriate file name as the value.

11.7 Cut Pool Parameters 79

cp warm start – boolean (0). Used to allow the cut pool to make a warm start by reading in a
previously written log file. If this option is set, then the line following must start with the
keyword cp warm start file name and include the appropriate file name as the value.

block size – integer (5000). Indicates the size of the blocks to allocate when more space is
needed in the cut list.

max size – integer (2000000). Indicates the maximum size of the cut pool in bytes. This is the
total memory taken up by the cut list, including all data structures and the array of pointers
itself.

max number of cuts – integer (10000). Indicates the maximum number of cuts allowed to be
stored. When this max is reached, cuts are forceably purged, starting with duplicates and
then those indicated by the parameter delete which (see below), until the list is below the
allowable size.

min to delete – integer (1000). Indicates the number of cuts required to be deleted when the
pool reaches it’s maximum size.

touches until deletion – integer (10). When using the number of touches a cut has as a mea-
sure of its quality, this parameter indicates the number of touches a cut can have before being
deleted from the pool. The number of touches is the number of times in a row that a cut
has been checked without being found to be violated. It is a measure of a cut’s relevance or
effectiveness.

delete which – integer (DELETE BY TOUCHES{2}). Indicates which cuts to delete when purging
the pool. DELETE BY TOUCHES indicates that cuts whose number of touches is above the
threshold (see touches until deletion above) should be purged if the pool gets too large.
DELETE BY QUALITY{1} indicates that a user-defined measure of quality should be used (see
the function user check cuts in Section10.4).

check which – integer (CHECK ALL CUTS{0}). Indicates which cuts should be checked for vi-
olation. The choices are to check all cuts (CHECK ALL CUTS{0}); only those that have
number of touches below the threshold (CHECK TOUCHES{2}); only those that were gen-
erated at a level higher in the tree than the current one (CHECK LEVEL{1}); or both
(CHECK LEVEL AND TOUCHES{3}). Note that with CHECK ALL CUTS set, SYMPHONY will
still only check the first cuts to check cuts in the list ordered by quality (see the function
user check cut).

cuts to check – integer (1000). Indicates how many cuts in the pool to actually check. The
list is ordered by quality and the first cuts to check cuts are checked for violation.

80 REFERENCES

12 Bibliography

References

[1] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, On the solution of traveling sales-
man problems, Documenta Mathematica Journal der Deutschen Mathematiker-Vereinigung,
International Congress of Mathematicians (1998), 645.

[2] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, CONCORDE TSP Solver, available
at www.keck.caam.rice.edu/concorde.html.

[3] E. Balas, S. Ceria, and G. Cornuéjols, Mixed 0-1 Programming by Lift-and-Project in a
Branch-and-Cut Framework, Management Science 42 (1996), 9.

[4] E. Balas and P. Toth, Branch and Bound Methods, in E.L. Lawler, J.K. Lenstra, A.H.G.
Rinnooy Kan, and D.B. Shmoys, eds., The Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimization, Wiley, New York (1985), 361.

[5] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H.
Vance, Branch-and-Price: Column Generation for Huge Integer Programs, Operations Re-
search 46 (1998), 316.

[6] M. Benchouche, V.-D. Cung, S. Dowaji, B. Le Cun, T. Mautor, and C. Roucairol,
Building a Parallel Branch and Bound Library, in Solving Combinatorial Optimization Problems
in Parallel, Lecture Notes in Computer Science 1054, Springer, Berlin (1996), 201.

[7] Q. Chen and M.C. Ferris, FATCOP: A Fault Tolerant Condor-PVM Mixed Integer Pro-
gramming Solver, University of Wisconsin CS Department Technical Report 99-05, Madison,
WI (1999).

[8] Common Optimization INterface for Operations Research, http://www.coin-or.org.

[9] C. Cordier, H. Marchand, R. Laundy, and L.A. Wolsey, bc-opt: A Branch-and-Cut
Code for Mixed Integer Programs, Mathematical Programming 86 (1999), 335.

[10] ILOG CPLEX 6.5 Reference Manual, ILOG (1994).

[11] J. Eckstein, C.A. Phillips, and W.E. Hart, PICO: An Object-Oriented Framework for
Parallel Branch and Bound, RUTCOR Research Report 40-2000, Rutgers University, Piscat-
away, NJ (2000).

[12] M. Eső, Parallel Branch and Cut for Set Partitioning, Ph.D. Dissertation, Field of Operations
Research, Cornell University, Ithaca, NY (1999).

[13] A. Geist et al., PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for Networked
Parallel Computing, MIT Press, Cambridge, MA (1994).

[14] B. Gendron and T.G. Crainic, Parallel Branch and Bound Algorithms: Survey and Syn-
thesis, Operations Research 42 (1994), 1042.

[15] M. Grötschel, M. Jünger, and G. Reinelt, A Cutting Plane Algorithm for the Linear
Ordering Problem, Operations Research 32 (1984), 1155.

REFERENCES 81

[16] A. Grama and V. Kumar, Parallel Search Algorithms for Discrete Optimization Problems,
ORSA Journal on Computing 7 (1995), 365.

[17] K. Hoffman and M. Padberg, LP-Based Combinatorial Problem Solving, Annals of Oper-
ations Research 4 (1985/86), 145.

[18] M. Jünger and S. Thienel, The ABACUS System for Branch and Cut and Price Algorithms
in Integer Programming and Combinatorial Optimization, Software Practice and Experience 30
(2000), 1325.

[19] M. Jünger and S. Thienel, Introduction to ABACUS—a branch-and-cut system, Opera-
tions Research Letters 22 (1998), 83.

[20] V. Kumar and V.N. Rao, Parallel Depth-first Search. Part II. Analysis., International
Journal of Parallel Programming 16 (1987), 501.

[21] L. Ladányi, T.K. Ralphs, and L.E. Trotter, Branch, Cut, and Price: Sequential and
Parallel, Computational Combinatorial Optimization, D. Naddef and M. Jünger, eds., Springer,
Berlin (2001), 223.

[22] L. Ladányi, T.K. Ralphs, and M.J. Saltzman, A Library Hierarchy for Implementing
Scalable Parallel Search Algorithms, available at http://www.lehigh.edu/~tkr2/pubs.html

[23] J. Linderoth, Topics in Parallel Integer Optimization, Ph.D. Dissertation, School of Indus-
trial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA (1998).

[24] A. Martin, Integer Programs with Block Structure, Habilitation Thesis, Technical University
of Berlin, Berlin, Germany (1998).

[25] G.L. Nemhauser, M.W.P. Savelsbergh, and G.S. Sigismondi, MINTO, a Mixed INTe-
ger Optimizer, Operations Research Letters 15 (1994), 47.

[26] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, Wiley, New
York (1988).

[27] M. Padberg and G. Rinaldi, A Branch-and-Cut Algorithm for the Resolution of Large-Scale
Traveling Salesman Problems, SIAM Review 33 (1991), 60.

[28] T.K. Ralphs, Parallel Branch and Cut for Vehicle Routing, Ph.D. Dissertation, Field of
Operations Research, Cornell University, Ithaca, NY (1995).

[29] T.K. Ralphs and L. Ladányi, Computational Experience with Branch, Cut, and Price:
Sequential and Parallel, in preparation.

[30] T.K. Ralphs and L. Ladányi, SYMPHONY: A Parallel Framework for Branch and Cut,
White paper, Rice University (1999).

[31] V.N. Rao and V. Kumar, Parallel Depth-first Search. Part I. Implementation., International
Journal of Parallel Programming 16 (1987), 479.

[32] Y. Shinano, M. Higaki, and R. Hirabayashi, Generalized Utility for Parallel Branch and
Bound Algorithms, Proceedings of the 1995 Seventh Symposium on Parallel and Distributed
Processing, IEEE Computer Society Press, Los Alamitos, CA (1995), 392.

82 REFERENCES

[33] Y. Shinano, K. Harada, and R. Hirabayashi, Control Schemes in a Generalized Utility for
Parallel Branch and Bound, Proceedings of the 1997 Eleventh International Parallel Processing
Symposium, IEEE Computer Society Press, Los Alamitos, CA (1997), 621.

[34] S. Tschöke and T. Polzer, Portable Parallel Branch and Bound Library User Manual,
Library Version 2.0, Department of Computer Science, University of Paderborn.

